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* 

Preface 

This report presents state-of-the-art approaches to two important elements of the system for safety man-
agement of roads: (1) Road accident black spot management (systems for identifying, analysing and treat-
ing hazardous road locations), and (2) Safety analysis of road networks (network safety management for 
the purpose of identifying and setting priorities for improving safety on longer sections of roads). The re-
port is the first of three reports that will document work package 6 of the RIPCORD-ISEREST project 
(Road Infrastructure safety Protection – COre-Research and Development for road safety in Europe; In-
creasing SafEty and REliability of secondary roads for a Sustainable surface Transport). 

The report is one of three reports to be published in work package 6 of RIPCORD-ISEREST. These re-
ports are: 

 
1. State-of-the-art approaches to road accident black spot management and safety analysis of road 

networks. 
2. Best practice guidelines on black spot management and safety analysis of road networks. 
3. Black spot management and safety analysis of road networks. Best practice guidelines and im-

plementation steps. 
 
Based on extensive research conducted as part of the project and on a review of similar research done 

by others, it is concluded that a systematic application of the empirical Bayes (EB) approach to road safety 
estimation represents the current state-of-the-art with respect to both black spot management and safety 
analysis of road networks. The empirical Bayes approach to road safety estimation has been developed by 
Ezra Hauer and is extensively applied in North America. It has so far not been widely applied in Europe, 
but was introduced successfully in Norway in 2002 when a new method for identifying hazardous road 
sections – injury severity density – was introduced. 

The project has been funded by the European Commission and the Research Council of Norway. Rune 
Elvik was project manager and wrote this report. Valuable comments to earlier drafts of the report (or parts 
of it) have been provided by Ezra Hauer, Werner Köppel, Christian Stefan, Joao Cardoso, Rob Eenink, 
Martine Reurings, Stefan Matena, Roland Weber and Peter Christensen. Their comments have helped im-
prove the report. The author is responsible for any remaining shortcomings. 

 
 
 

Oslo, September 2007 
Institute of Transport Economics 

 
 
Lasse Fridstrøm          Marika Kolbenstvedt 
Managing director         Head of department 
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Summary: 

State-of-the-art approaches to road 
accident black spot management and 
safety analysis of road networks 

Aim of the report and main research problems 
This report presents state-of-the-art approaches to road accident black spot 
management and safety analysis of road networks. The term state-of-the-art 
approaches refers to the best approaches from a theoretical point of view, which 
are not necessarily identical to any approaches currently used. The report 
describes two activities that are essential elements of any system for safety 
management of roads: 

1. Identification, analysis and treatment of road accident black spots (black 
spot management). 

2. Safety analysis of road networks. 

The report is part of the RIPCORD-ISEREST project funded by the European 
Commission. The main objective of the report is to describe state-of-the-art 
approaches to black spot management and safety analysis of road networks. The 
state-of-the-art approaches are compared to approaches that are currently used. 
Based on this comparison, guidelines for best practice will be developed in a  
subsequent report. The main research problems studied in this report are: 

1. What is the state-of-the-art approach (i.e. theoretically best approach) to 
road accident black spot management? 

2. Which approaches to road accident black spot management are currently 
used in European countries? 

3. What is the state-of-the-art approach to safety analysis of road networks 
(network safety management)? 

4. Which approaches to network safety management are currently used in 
different countries? 

 

Elements of the state-of-the-art approach 
The report concludes that a systematic use of the empirical Bayes method for road 
safety estimation represents the current state-of-the-art with respect to both black 
spot management and network safety management. The empirical Bayes approach 
has so far not been widely applied in Europe, but is widely used in North 
America. 

The essential elements of an emerging state-of-the-art are as follows: 
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1. Black spots should be identified in terms of the expected number of 
accidents, not the recorded number of accidents. 

2. Black spots should be identified by reference to a clearly defined 
population of sites, whose members can in principle be enumerated. 

3. Use of a sliding window approach to identifying black spots is 
discouraged. This approach artificially inflates variation in accident 
counts. 

4. To estimate the expected number of accidents, multivariate accident 
prediction models should be developed. 

5. The best estimate of the expected number of accidents for a single site is 
obtained by combining the recorded number of accidents with the model 
estimate for that site. This should be done by applying the empirical Bayes 
method. 

6. The performance of alternative critical values for the expected number of 
accidents qualifying a site as black spot should be investigated in terms of 
sensitivity and specificity. An optimal criterion should be chosen. 

7. The traditional criterion for a true black spot, which is that there is a 
dominant pattern of accidents, has not been validated. Analysis of 
accidents at black spots is best viewed as a means of developing 
hypotheses regarding potentially contributing factors to the accidents. 

8. Analysis of black spots should recognise the possibility that an apparent 
pattern may arise as a result of chance alone. Binomial tests should be 
applied to determine the probability that a certain number of accidents of a 
certain type is the result of chance only. 

9. Analysis of black spots should employ a blinded design and rely on a 
comparison of the black spot to a safe location. The task of analysts is to 
identify risk factors for accidents. Analysts should not known which site is 
the black spot and which site is the safe one. 

10. Evaluation of the effects of black spot treatment should employ the 
empirical Bayes before-and-after design. 

A state-of-the-art approach to safety analysis of road networks should contain all 
these elements. In addition, a state-of-the-art approach to safety analysis of road 
networks should include a routine for merging adjacent sections for the purpose of 
accident analysis. The profiles and peaks algorithm is suitable for this purpose. 

 

The empirical Bayes approach to road safety estimation 
The empirical Bayes approach to road safety estimation has been developed by 
Ezra Hauer. The approach makes it possible to provide unbiased estimates of the 
long-term expected number of accidents for individual elements of the road 
system, such as a specific junction, a specific curve or a specific road section. 
This represents major progress in road safety estimation and permits an 
elimination of the bias attributable to random fluctuations in the recorded number 
of accidents (bias attributable to regression-to-the-mean). 
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By applying the empirical Bayes approach systematically, it is possible to identify 
hazardous road locations that have an abnormally high expected number of 
accidents, not just a recorded number of accidents that happened to be abnormally 
high due to randomness. This implies that the identification of hazardous road 
locations can be made substantially more accurate than before. The report 
presents studies comparing different criteria for identifying hazardous road 
locations. The empirical Bayes technique performs better than any other method 
according to commonly accepted epidemiological criteria of diagnostic accuracy. 

There are several variants of the empirical Bayes approach. The most 
sophisticated version estimates the expected number of accidents by combining 
knowledge extracted from two sources: 

1. A multivariate accident prediction model, which describes the normal 
level of safety and the effects of variables influencing it. The most 
common form of accident prediction model is a negative binomial 
regression model. 

2. The recorded number of accidents for a specific site during the same 
period as that used in fitting the accident prediction model. 

These two sources of knowledge are combined linearly. A weight is assigned to 
the normal number of accidents and a complementary weight (i.e., the weights 
sum to 1) is assigned to the recorded number of accidents. The better the accident 
prediction model (in terms of the share of systematic variation in the number of 
accidents explained by it), the greater is the weight attached to its predictions. 

Developing good accident prediction models is difficult. The report therefore 
includes a review of methodological problems involved in developing and fitting 
accident prediction models. 

 

Black spot management 
Black spot management has a long tradition in traffic engineering and has been 
held in high esteem. The report describes the current approaches to black spot 
management in Austria, Denmark, Flanders (Belgium), Germany, Hungary, 
Norway, Portugal and Switzerland. The review shows that none of these countries 
have fully implemented a state-of-the-art approach to black spot management 
today. Portugal is the only country in which the empirical Bayes approach is 
partly implemented. There is, in general, a considerable gap between current 
practice and the state-of-the-art approach. 

The report shows how to identify hazardous road locations by means of the 
empirical Bayes approach. It is moreover argued that current techniques for 
accident analysis need to be developed, as these techniques are not currently able 
to discriminate between false positives and true positives with sufficient 
precision. 

 

Accident prediction models: a methodological review 
Accident prediction models are important both with respect to black spot 
management and with respect to network safety management. The report 
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discusses a number of methodological problems associated with the development 
and fitting of accident prediction models. The discussion is concluded by a list of 
criteria that can be used to evaluate the quality of accident prediction models. 

 

Network safety management 
The main objective of network safety management is partly the same as that of 
black spot management: to identify those sites that are in greatest need of road 
safety treatment. There are, however, two important differences between black 
spot management and network safety management: 

1. In network safety management, an important objective is to identify longer 
sections of road that have safety problems. A black spot, on the other 
hand, is usually a very local point on the road system, like a junction. 

2. In network safety management, account is taken of accident severity and 
an attempt is made to identify road sections where fatal and serious injury 
accidents are overrepresented. In black spot management, the number of 
accidents at each black spot is usually too low to permit a meaningful 
consideration of accident severity. 

Systems for network safety management in Germany, Norway and the United 
States are described in the report. The systems implemented in Norway and the 
United States are based on the empirical Bayes approach. In the United States, an 
algorithm designed to identify longer road sections with safety problems, profiles-
and-peaks, has been implemented. If longer road sections are used, the number of 
accidents serving as basis for analysis is increased. 
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Sammendrag: 

Utpekning og analyse av ulykkesbelastede 
steder og sikkerhetsanalyse av vegsystemer 

Rapportens formål og hovedproblemstillinger 
Denne rapporten beskriver ”state-of-the-art”-tilnærmingsmåter til to viktige 
funksjoner i et system for sikkerhetsstyring av veger: 

1. Utpekning, analyse og utbedring av spesielt ulykkesbelastede steder. 

2. Trafikksikkerhetsanalyse av vegnett. 

Med ”state-of-the-art”-tilnærmingsmåter menes de beste tilnærmingsmåter fra et 
teoretisk synspunkt, noe som ikke nødvendigvis sammenfaller med noen av de 
tilnærmingsmåter som i dag i praksis brukes for utpeke ulykkesbelastede steder 
eller gjennomføre sikkerhetsanalyse av vegsystemer. Rapporten er utarbeidet som 
ledd i EU-prosjektet RIPCORD-ISEREST. Rapportens hovedformål er å beskrive 
de teoretisk sett best tenkelig tilnærmingsmåter til utpekning, analyse og 
utbedring av spesielt ulykkesbelastede steder og trafikksikkerhetsanalyse av 
vegnett. Disse tilnærmingsmåter blir sammenlignet med dem som er i bruk i dag. 
På grunnlag av denne sammenligningen vil en senere rapport utarbeide 
retningslinjer for god praksis på området (”best practice guidelines”). 
Hovedproblemstillingene som tas opp i rapporten er: 

1. Hva er den teoretisk sett beste tilnærmingsmåten til utpekning, analyse og 
utbedring av spesielt ulykkesbelastede steder? 

2. Hvilke tilnærmingsmåter bruker ulike europeiske land til utpekning, 
analyse og utbedring av spesielt ulykkesbelastede steder? 

3. Hva er den teoretisk sett beste tilnærmingsmåten til trafikksikkerhets-
analyse av et vegnett? 

4. Hvilke tilnærmingsmåter til trafikksikkerhetsanalyse av vegnett bruker 
ulike land i dag? 

 

Hovedelementer i ”state-of-the-art”-tilnærmingsmåter 
Både når det gjelder utpekning, analyse og utbedring av spesielt ulykkesbelastede 
steder og når det gjelder trafikksikkerhetsanalyse av vegnett konkluderer 
rapporten med at den teoretisk sett beste tilnærmingsmåten er å benytte empirisk 
Bayes metode så systematisk som mulig. Denne metoden blir i dag i liten grad 
brukt i europeiske land, men er i utstrakt bruk i USA og Canada. 

De viktigste elementene i de teoretisk beste metodene for utpekning og analyse av 
ulykkesbelastede steder og sikkerhetsanalyse av vegsystemer kan oppsummeres i 
følgende punkter: 
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1. Ulykkesbelastede steder bør identifiseres på grunnlag av forventet 
ulykkestall, ikke registrert ulykkestall. 

2. Ulykkesbelastede steder bør utpekes med utgangspunkt i en klart definert 
populasjon av tilsvarende steder, som i prinsippet kan listes opp. 

3. Det frarådes å benytte et ”glidende vindu” til å identifisere 
ulykkesbelastede steder. En slik framgangsmåte forsterker problemene 
med falske positive. 

4. For å kunne beregne forventet ulykkestall, bør det utvikles multivariate 
ulykkesmodeller. 

5. Beste anslag på forventet ulykkestall på bestemte steder på vegnettet 
fremkommer ved å kombinere registrert ulykkestall med forventet 
ulykkestall beregnet på grunnlag av en ulykkesmodell. Dette kan gjøres 
med empirisk Bayes metode. 

6. Ulike kritiske verdier for hvor mange ulykker som fører til at et sted 
regnes som ulykkesbelastet bør undersøkes med epidemiologiske kriterier 
og optimalt tall velges. 

7. Det tradisjonelle kriteriet for å regne et sted som et ekte ulykkespunkt – at 
det finnes et klart ulykkesmønster – er ikke validert. Man bør kun betrakte 
ulykkesanalyser som en måte å utvikle hypoteser på, ikke som en test av 
de samme hypotesene. 

8. Analyse av ulykkesbelastede steder bør ta hensyn til at tilsynelatende klare 
ulykkesmønstre kan oppstå rent tilfeldig. Det bør derfor gjøres statistiske 
tester av om ulykkesmønsteret avviker fra det normale. 

9. Analyse av ulykkesbelastede steder bør skje i to trinn. Første trinn er en 
tradisjonell ulykkesanalyse. Andre trinn er en analyse av risikofaktorer 
som kan ha bidratt til ulykkene. Denne delen av analysen bør utføres som 
en sammenligning av et sikkert sted og et ulykkesbelastet sted. De som 
utfører analysen bør ikke vite hvilket sted som er sikkert og hvilket som er 
ulykkesbelastet. 

10. Undersøkelser av virkninger av utbedring av ulykkesbelastede steder bør 
benytte empirisk Bayes metode. 

Ved sikkerhetsanalyse av vegsystemer bør alle elementer på listen over inngå. I 
tillegg bør man vurdere om tilgrensende strekninger kan slås sammen for 
analyseformål. Til dette formål kan ”profiles-and-peaks” metoden som er utviklet 
av Ezra Hauer benyttes. 

 

Empirisk Bayes metode for beregning av forventingsrette ulykkestall 
Empirisk Bayes metode for beregning av forventingsrette ulykkestall er utviklet 
av Ezra Hauer. Metoden gjør det mulig å beregne forventingsrette anslag på det 
langsiktige forventede ulykkestall for de enkelte elementer i vegsystemet, for 
eksempel ett enkelt vegkryss, en bestemt kurve eller en bestemt vegstrekning. 
Dette representerer et stort framskritt i metoder for estimering av trafikksikkerhet 
og betyr at man kan eliminere de skjevheter tilfeldige variasjoner i ulykkestall kan 
føre til (regresjonseffekter i ulykkestall).  
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Systematisk bruk av empirisk Bayes metode gjør det mulig å utpeke spesielt 
ulykkesbelastede steder der det forventede ulykkestallet er unormalt høyt, i 
motsetning til steder der tilfeldigheter har ført til at det registrerte ulykkestallet i 
en viss periode var unormalt høyt. Dette innebærer at utpekningen av 
ulykkesbelastede steder blir langt mer treffsikker enn før. I rapporten presenteres 
forskning basert på norske data som viser at empirisk Bayes metode er bedre enn 
andre metoder som er eller har vært benyttet for å identifisere spesielt 
ulykkesbelastede steder. 

Det finnes ulike varianter av empirisk Bayes metode. Den mest avanserte 
versjonen av metoden beregner forventningsrette ulykkestall ved å kombinere to 
kilder til kunnskap om trafikksikkerhet: 

1. En multivariat ulykkesmodell som beskriver det normale nivået på 
trafikksikkerheten som funksjon av ulike variabler som påvirker dette. 
Den vanligste formen for ulykkesmodell er en negativ binomial 
regresjonsmodell. 

2. Det registrerte ulykkestallet for det enkelte sted for den samme perioden 
som datagrunnlaget for ulykkesmodellen omfatter. 

Disse to kildene til kunnskap vektes sammen. Jo mer av variasjonen i ulykkestall 
den multivariate modellen forklarer, desto mer vekt legges på dens prediksjon av 
ulykkestallet på det enkelte sted. 

Utvikling av gode ulykkesmodeller er krevende. Rapporten inneholder derfor en 
drøfting av metodeproblemer knyttet til utvikling av multivariate 
ulykkesmodeller. 

 

Utpekning, analyse og utbedring av spesielt ulykkesbelastede steder 
Utpekning, analyse og utbedring av spesielt ulykkesbelastede steder (”black spot 
arbeid”) har lange tradisjoner og høy status i veg- og trafikkteknikk. I rapporten 
gjennomgås hovedtrekkene i hvordan dette arbeidet utføres i Danmark, Flandern 
(Belgia), Norge, Portugal, Sveits, Tyskland, Ungarn og Østerrike. 
Gjennomgangen viser at ingen av landene i dag fullt ut benytter empirisk Bayes 
metode i sitt arbeid med utpekning, analyse og utbedring av spesielt 
ulykkesbelastede steder. Bare i Portugal er empirisk Bayes metode delvis tatt i 
bruk. Det er til dels en betydelig avstand mellom dagens praksis og den teoretisk 
sett beste praksis. 

I rapporten vises hvordan man kan utpeke ulykkesbelastede steder med empirisk 
Bayes metode. Videre argumenteres det for at metodene for ulykkesanalyse på 
ulykkesbelastede steder må videreutvikles, fordi dagens metoder ikke skiller godt 
nok mellom ekte positive og falske positive ulykkesbelastede steder. 

 

Metodologisk vurdering av ulykkesmodeller 
Ulykkesmodeller spiller en viktig rolle i de teoretisk beste tilnærmingsmåtene 
både til utpakning av ulykkesbelastede steder og ved trafikksikkerhetsanalyse av 
vegnettet. Rapporten gjennomgår en lang rekke metodeproblemer knyttet til 
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utvikling av multivariate ulykkesmodeller og drøfter mulige løsninger av disse 
problemene. Det gis retningslinjer for å bedømme kvaliteten på ulykkesmodeller. 

 

Trafikksikkerhetsanalyse av vegnettet 
En trafikksikkerhetsanalyse av vegnettet har delvis samme siktemål som 
utpekning av ulykkesbelastede steder, nemlig å identifisere de deler av vegnettet 
som har de største ulykkesproblemene. Det er imidlertid to viktige forskjeller 
mellom utpekning av ulykkesbelastede steder og trafikksikkerhetsanalyse av 
vegnettet. 

1. Ved trafikksikkerhetsanalyse av vegnettet ønsker man å finne fram til 
lengre vegstrekninger med ulykkesproblemer. Et spesielt ulykkesbelastet 
sted er derimot vanligvis et punkt på vegnettet, eksempelvis et kryss eller 
en kurve. 

2. Ved trafikksikkerhetsanalyse av vegnettet tas det hensyn til ulykkenes 
alvorlighetsgrad og man ønsker å identifisere strekninger der alvorlige 
ulykker er overrepresentert. Ved utpekning av ulykkesbelastede steder er 
ofte ulykkestallet for lavt til at man på en særlig pålitelig måte kan avgjøre 
om alvorlige ulykker er overrepresentert. 

I rapporten gjenomgås etablerte systemer for trafikksikkerhetsanalyse i Norge, 
Tyskland og USA. I Norge og USA bygger disse systemene på empirisk Bayes 
metode, i Tyskland er denne ennå ikke tatt i bruk. I USA er det utviklet en 
statistisk metode, ”profiles-and-peaks” (dalbunn og fjelltopper) som gjør det 
mulig å avgrense statistisk lengre strekninger som har en opphopning av ulykker. 
Ved å benytte lengre strekninger øker antall ulykker analysen kan bygge på. 
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1  Introduction 

This report presents state-of-the-art approaches to black spot management and 
safety analysis of road networks. The report is part of work package 6 of 
RIPCORD-ISEREST. It will be followed by a report that develops best practice 
guidelines for black spot management and safety analysis of road networks. The 
main questions discussed in this report are: 

1. What are the essential elements of black spot management? 

2. How are road accident black spots currently defined in different countries?  

3. What is the current state-of-the art with respect to the definition, 
identification and analysis of road accident black spots? How do currently 
used definitions and techniques for identification of road accident black 
spots compare to the state-of-the-art? 

4. What are the essential elements of road network safety management? 

5. How do different countries perform safety analysis of road networks as 
part of network safety management today? 

6. What is the current state-of-the-art with respect to safety analysis of road 
networks? How do current approaches to network safety management 
compare to the state-of-the-art? 

The main objective of the report is to describe state-of-the-art techniques for black 
spot management and road network safety management. Current approaches will 
be compared to the state-of-the-art. This represents the basis for the subsequent 
development of best practice guidelines. Best practice guidelines will consist of a 
series of steps that can be taken to bring practice closer to the state-of-the-art. The 
report argues that a systematic use of the empirical Bayes approach to road safety 
estimation represents the state-of-the-art with respect both to black spot 
management and safety analysis of road networks. Hence, the report describes the 
empirical Bayes approach in some details and provides a number of examples of 
its use. 

The report is based on an extensive literature survey, as well as on empirical 
studies relying on data from Norway. In addition, simulation has been used. 
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2 Black spot management 

This chapter presents the current approach to black spot management in some 
European countries. Following this presentation, elements of a state-of-the-art 
approach to black spot management are discussed. These elements include choice 
of an optimal criterion for the statistical identification of black spots, a new 
approach to the analysis of accidents at black spots, the development of clear 
criteria for discriminating between true and false black spots, an optimal approach 
to prioritising black spots for treatment, and an unbiased approach to the 
evaluation of the effects of treating black spots. Based on an empirical study, it is 
concluded that the empirical Bayes approach to road safety estimation represents 
the current state-of-the-art. 

2.1 Stages of black spot management 
Figure 3.1 shows the stages of black spot management in the conventional form. 

Road safety management starts with the systematic collection of data that enable 
the identification of road safety problems, like sites that have developed into black 
spots. A black spot can, at this stage, be defined as any location where there is a 
concentration of accidents. A more precise definition will be given later on (see 
section 2.5). Once black spots have been identified, accidents are analysed in 
order to find a common pattern of accidents and factors that contribute to 
accidents. A visit to each site identified as a black spot is usually part of the 
process of analysis. 

The objective of a detailed analysis of accidents and other relevant data is to 
identify factors contributing to accidents that may be amenable to treatment. If 
this analysis is not successful, it will be concluded that the black spot is likely to 
be false and no treatment will then be implemented. If, on the other hand, a 
treatment believed to be effective is found, it will be implemented and its effects 
evaluated. 

In the following sections, the elements of black spot management will be 
discussed more in detail, starting with the black spot concept itself. 

2.2 A review of definitions of a road accident black spot 

2.2.1 A taxonomy of definitions 
Based on an OECD report (OECD 1976) and more recent work (Persaud, Lyon 
and Nguyen 1999, Hauer et. al. 2002A, Vistisen 2002, Overgaard Madsen 2005) a 
distinction can be made between the following common definitions of road 
accident black spots: 
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   Collection of data on 
accidents and traffic 

  

     
  Detection of sites 

with many accidents 
  

     
  Analysis of accidents 

for each site 
  

     
  Visit to each high 

accident site 
  

    
Factors contributing 
to accidents found 

   Factors contributing 
to accidents not found 

     
Treatment proposed 

for each site 
   Further analysis using 

supplementary data 
     

Ranking of sites 
selected for treatment 

   Contributing factors 
still not found 

     
Treatment 

implemented 
   Black spot is 

classified as false 
     

Effects of treatment 
evaluated 

   No treatment 
proposed 

Kilde: TØI rapport 883/2007 

Figure 1: Stages of black spot management 

 

1. Numerical definitions 

a. Accident number 

b. Accident rate 

c. Accident rate and number 

2. Statistical definitions 

a. Critical value of accident number 

b. Critical value of accident rate 

3. Model-based definitions 

a. Empirical Bayes  

b. Dispersion value 
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An example of a simple numerical definition is the official Norwegian definition 
of a road accident black spot: “A black spot is any location with a maximum 
length of 100 metres, at which at least 4 injury accidents have been recorded 
during the last 5 years.” This definition does not make any reference to traffic 
volume or to the normal number of accidents, nor does it specify the type of 
location considered, except by stating that the location should not extend for more 
than 100 metres. The identification of black spots relies on the use of a “sliding 
window” with a length of 100 metres. 

An example of an accident rate definition of a black spot would be: “A black spot 
is any location (junction, section, curve, etc) at which the number of injury 
accidents per million vehicles (or vehicle kilometres), estimated for the most 
recent four years, exceeds the value of 1.5 (arbitrarily chosen)”. This definition 
differs from the simple accident number definition by taking account of traffic 
volume, and thus implicitly referring to what is regarded as a normal number of 
accidents. 

A statistical definition of an accident black spot relies on the comparison of the 
recorded number of accidents to a normal number for a similar type of location. 
For example, a junction will be classified as a black spot if the recorded number 
of accidents in a specific period is significantly higher than the normal number of 
accidents for this type of junction. Depending on how the normal number of 
accidents is estimated, a statistical definition may come close to a model based 
definition of a black spot. 

Model-based definitions of road accident black spots are derived from a 
multivariate accident prediction model. An example is the Empirical Bayes (EB) 
definition of a black spot (site with promise) given by Persaud et. al. (1999). 
Models were developed for intersections and road sections, and the 20 highest 
ranked locations were identified according to the EB estimate of the expected 
number of accidents.  

Persaud et. al. (1999) tested the performance of two interpretations of a model-
based Empirical Bayes black spot concept. According to the first definition, black 
spots were simply those 20 intersections that had the highest expected number of 
accidents, according to the EB-estimate. According to the second definition, 
borrowed from McGuigan (1981), a black spot was defined in terms of the 
potential for accident reduction, defined as follows: 

Safety potential = m – P 

In which m is the EB-estimate of the expected number of accidents for a specific 
site and P is the model estimate of the normal expected number of accidents for 
similar sites. 

An identical concept is developed in great detail by Vistisen (2002), who refers to 
it as the dispersion factor. A numerical example may clarify what is meant by this. 
Suppose a multivariate accident prediction model has been developed, predicting 
6.45 accidents (λ = 6.45)  for a site. The inverse value of the over-dispersion 
parameter (1/μ) for this model is 2.99 (i.e. the over-dispersion parameter was 
0.3345). Suppose that 15 accidents have been recorded at this site (x = 15). The 
EB-estimate of the expected number of accidents is then: 
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⎡ ⎤⎛ ⎞ ⎛ ⎞
λ = ⋅λ + − ⋅⎢ ⎥⎜ ⎟ ⎜ ⎟+ λ μ + λ μ⎝ ⎠ ⎝ ⎠⎣ ⎦

  (1) 

Thus, the EB-estimate of the expected number of accidents is: 

EB-estimate = [1/(1 + 6.45/2.99)] · 6.45 + [1- (1/(1 + 6.45/2.99))] · 15 = 12.29 

It is now possible to decompose the contributions of three sources of variation to 
the recorded number of accidents: 

1. General factors, included in the accident prediction model = 
x
λ  =  

6.45/15 = 43 %. 

2. Random variation, the excess of the recorded number of accidents to the 

EB-estimate = 
( )x E( x)

x
− λ

= (15 – 12.29)/15 = 18 %. 

3. Local factors (and unknown or unmeasured general factors), the difference 

between the EB-estimate and the model estimate = 
( )E( x)

x
λ − λ

 =  

(12.29 – 6.45)/15 = 39 %. 

It is the third of these factors that Vistisen (2002) refers to as the dispersion factor. 
Ideally speaking, it represents the effects of local risk factors that are not included 
in the accident prediction model. In practice, however, the term is likely to 
include both the effects of local factors and the effects of more general factors that 
have not been included in the accident prediction model. 

Some examples from European countries show the multiplicity of definitions of 
road accident black spots currently used. 

2.2.2 Definition, identification and analysis of black spots in Austria 
In Austria, black spots are defined in the Austrian Guideline Code for the 
Planning, Construction and Maintenance of Roads (RVS 1.21) published in 
November 2002. According to this guideline, scenes of accidents are 
distinguished in black spots and hazardous locations, depending on their recorded 
crash history. To be classified as a black spot, one of the following two criteria 
has to be met: 

• 3 or more similar injury accidents within 3 years and a relative coefficient 
Rk of at least 0.8. The value of this coefficient is calculated as follows: 

AADTx 10x 70.5
UR 5-K +

=  

Where: 

AADT = Annual Average Daily Traffic [vehicles/24 hours] 

U = Number of injury accidents within 3 years 
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• at least 5 accidents (including property damage only) of similar type 
within one year. Since 1995 property damage accidents are not recorded in 
Austria, hence black spot management primarily relies on the first 
definition. 

For calculation, a sliding window with a length of 250 m is being used. The 
window follows the course of the road (network) under surveillance and flags 
each location where one of the two criteria for a black spot is met (see Figure 2). 

 

 

Figure 2: Identification of road accident black spots in Austria by sliding window 
approach. Source: Austrian guidelines for black spot identification. 

 

The critical value of 0.8 of the relative coefficient Rk will be reached under the 
following circumstances: 

3 injury accidents in 3 years and an AADT up to 10,700 vehicles/24 hours 

4 injury accidents in 3 years and an AADT up to 16,700 vehicles/24 hours 

5 injury accidents in 3 years and an AADT up to 22,600 vehicles/24 hours 

6 injury accidents in 3 years and an AADT up to 28,600 vehicles/24 hours 

Figure 3 shows the different threshold levels for the coefficient Rk, depending on 
the number of (similar) injury accidents and AADT. The grey box on the bottom 
of the graph marks the non-critical range of the accident analysis with an Rk 
below 0.8. If there is no data available on annual average daily traffic, the location 
is classified as a possible black spot according to the first criterion listed (3 or 
more similar injury accidents in 3 years).   
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Figure 3: Critical values of the coefficient Rk for identification of road accident black 
spots in Austria. Source: Austrian guidelines for black spot identification. 

 

The Austrian Guideline Code for the Planning, Construction and Maintenance of 
Roads classifies accidents according to how they occur and which road users are 
involved. Accidents have to be of similar type before one of the two criteria 
defining a black spot can be applied. A distinction is made between the following 
types of accident: 

• Single vehicle accident 
• Rear end collision 
• Head-on collision 
• Right angle collision 
• Collision involving parked vehicle 
• Pedestrian accident 
• Cyclist accident 
• Accident involving powered two wheeler 
• Accident in twilight or darkness 
• Accident on wet road surface or on road surface covered by ice or snow 

It can be seen that these categories are not mutually exclusive, i.e. the same 
accident may be placed in more than one category (e.g. a pedestrian accident in 
the dark on a wet road surface). 

As mentioned previously, accidents with property damage only have not been 
systematically recorded since 1995 and therefore can not be used for locating 
black spots. Hence, black spot Management in Austria currently relies on injury 
accidents only. If such an accident occurs on a public road, the police force is 
obliged to fill out a standardized accident report form. This information is 
delivered to both the Statistics Austria and the Austria Road Safety Board (KfV) 
for further investigations and analyses. 

Although there is a legal basis for black spot management in Austria, the 
definition of black spots described in the RVS 1.21 is not binding, i.e. each of the 
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nine federal states is free to make changes or define a black spot by themselves 
and thus influence their amount on their respective road network. Some of the 
states carry out in-depth investigations and propose certain measures to prevent 
further accidents while others do not bother at all with the accident data the 
Austrian Road Safety Board provides them with.  

Black spot management in Austria consists of the following steps: 

A) Statistical analysis of the black spot 

• Type of accident (Rear-end collision, frontal collision, etc.) 
• Weather and Road condition during the accident  
• Road user involvement (lorry, passenger car, pedestrian, etc.) 
• Severity of casualty (fatal, seriously or slightly injured, unharmed) 

B) Local Assessment of the black spot 

In-depth investigation of the accident site (including evaluation of the street 
environment, light conditions during darkness and twilight, traffic guidance, etc.) 

C) Proposing measures 

On the basis of the analysis and local assessment of the black spot, remedial 
measures are proposed. Some typical treatments for both black spots and 
hazardous locations are set out below. The treatment(s) selected should be those 
that address the safety problem in the most cost-effective manner. 

• Road realignments 
• Sealing of road shoulders 
• Speed control measures (e.g. radar boxes) 
• Installation/upgrading of street lighting 
• Installation of pedestrian signals 
• etc. 

D) Implementation of measures 

Measures are implemented to the extent available financial funds makes it 
possible. 

E) Before-and-after comparison of accidents occurrence 

After implementation of measures, accident occurrence is being observed in order 
to evaluate if the number and severity of accidents has been reduced. If this is not 
the case, further action has to be considered. 

2.2.3 Definition of black spots in Denmark 
The definition of road accident black spots in Denmark relies on a fairly detailed 
classification of the road system into various types of road sections and various 
types of intersections (Vistisen 2002, Overgaard Madsen 2005). For national 
roads, a distinction is made between road sections, roundabouts and other 
intersections. Each of these groups in turn consists of several types, such as 
motorways, other dual carriageway roads, two-lane roads in rural districts, two-
lane roads in urban areas, and so on. In each group of road sections, the normal 
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expected number of accidents is estimated by applying the following simple 
prediction model: 

 
Normal number of accidents = AADT βα ⋅   (2) 
 
AADT is annual average daily traffic volume. For intersections, models of the 
following form are used: 
 
Normal number of accidents = AADTAADT b

mima
21 ⋅⋅ βα   (3) 

 
The subscripts ma and mi refer to the major and minor approach to an 
intersection. In fitting these models, data for a period of 3 to 5 years are used. 

To identify a black spot, a test relying on the Poisson distribution is used. It is 
assumed that the models fitted adequately represent systematic variation in the 
number of accidents to the extent this variation can be attributed to traffic volume 
and the variables used to classify roads and intersections. If a site has a 
significantly higher number of accidents than random variation alone can explain, 
it is therefore assumed that the excessive number of accidents must be at least 
partly due to local risk factors. Hence, the definition of a road accident black spot 
used in Denmark is: a site with a reported number of accidents, which is higher 
than both a fixed minimum number and significantly higher than the normal 
expected number of accidents for a similar type of roadway element (section, 
roundabout or intersection). 

Currently, the minimum number of accidents for a site to be identified as a black 
spot is 4 accidents recorded during a period of 5 years. Moreover, the level of 
significance used in the statistical test is 5%. Thus, suppose the normal number of 
accidents for a roundabout has been estimated to 2.8 (during 5 years) and that 5 
accidents have been recorded. Applying the Poisson distribution, the probability 
of observing at least 5 accidents given that the mean number is 2.8 can be 
calculated to 0.152, which means that this roundabout would not be classified as a 
black spot.  

As far as road sections are concerned, black spots are identified by means of a 
sliding window approach, similar to the one used in Austria (see section 2.2.2). In 
Denmark, however, the length of the window used is found by solving the 
following equation with respect to l (Vistisen 2002, page 125): 

 

( )
ii

x
x min 1 ii ( l)T

min ii
x 0

lTp(X ) 1 ex T x!
−

− ⋅ ⋅λ

=

⋅ ⋅λ≥ = − ⋅ = α∑λ   (4) 

 

Here, the letter α refers to the critical level of statistical significance, i.e. 5%. X is 
the recorded number of accidents and p(X ≥ xmin│λiTi) is the probability that the 
recorded number of accidents exceeds the minimum value for a black spot, given 
that the expected number is λiTi. T denotes time, l denotes road length and λ 
denotes the expected number of accidents per kilometre of road. The equation 
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implies that a shorter sliding window will be used for road sections that have a 
high normal number of accidents than for road sections that have a low expected 
number of accidents. The value of the length of the sliding window will be 
determined so that for this length, the probability of observing an accident number 
equal to or greater than the minimum critical value (i.e. 4 accidents) equals 5%. 

As an example, consider a road that has an average accident density of 1.5 
accidents per kilometre. For such a road, the probability of observing 4 or more 
accidents is 0.0656, i.e. more than the critical probability value of 0.05. In 
general, the probability of observing a count of 4 or more is equal to 0.050 in a 
Poisson distribution whose expected value is 1.366. Hence, the length of the 
sliding window should be fixed to a value for which the mean number of 
accidents captured within the window is equal to 1.366. Thus, if the mean number 
of accidents per kilometre is 1.5, each sliding window should have a length of 
0.909 kilometres, as the mean per section (if we imagine the sections were fixed 
and not sliding) then becomes 1.366. 

If a road section had 10 accidents per kilometre, each sliding window would have 
to be 0.137 kilometres, at the expected number of accidents per 0.137 kilometre 
section is 1.366.  

The Danish model for identifying black spots comes close to a model-based 
approach. The main difference between the Danish approach and a model-based 
approach is that black spots in Denmark are identified according to the recorded 
number of accidents, not the expected number. 

Following accident analysis, potential safety treatments are prioritised on the 
basis of their estimated first year rate of return. The first year rate of return 
corresponds to the value of accident costs saved during the first year after 
treatment divided by the costs of implementing the safety treatment. Sites are 
ranked for treatment according to the marginal first year rates of return. Marginal 
first year rates of return are determined by ranking alternative treatments for a 
single site, or alternatives sites for treatment according to the following criterion: 

 

CC
ACACMB

iYiY

iYiY
YYi

12

12
21, −

−
=    (5) 

 

AC represents the savings in accident costs, C represents the cost of implementing 
a measure, and 1 and 2 are alternative measures, for which the first year rate of 
return is highest for measure 2. 

2.2.4 Definition and analysis of road accident black spots in Flanders 
In Flanders, the following definition of a road accident black spot is applied 
(Geurts 2006), based on police reports of accidents: 

Each site where in the last three years three or more accidents have occurred, is 
selected. Then, a site is considered to be dangerous when its score for priority (S), 
calculated using the following formula, equals 15 or more: 
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S = LI + 3SI + 5DI  

where LI = total number of slight injuries 

SI = total number of serious injuries (Each casualty that is admitted more than 24 
hours in hospital) 

DI = total number of deadly injuries (Each casualty that died within 30 days after 
the accident) 

Based on this definition, in Flanders currently 1,014 locations are considered as 
black spots. Each location identified as a black spot should have a length of not 
more than 100 metres. Three years of accident data are used to identify black 
spots. 

Unlike the other definitions of a road accident black spot reviewed so far, the 
definition used in Flanders tries to account for accident severity by assigning a 
greater weight to serious and fatal injuries than to slight injuries. Thus, a site at 
which there has been 2 fatal accidents and 1 serious injury accident will get a 
priority score of 13, whereas a site at which there has been 10 slight injury 
accidents will get a priority score of 10. 

Geurts (2006) investigated the sensitivity of the ranking of black spots in Flanders 
to the choice of weights for injury severity. Not surprisingly, the choice of 
weights was found to influence the ranking of the black spots. 

Geurts (2006) also explored the use of data mining to analyse accidents at black 
spots. Systematic data mining can be viewed as a technique for extracting 
information on all potentially interesting patterns in the accidents recorded at a 
black spot. It should not, however, be seen as a replacement for site visits or other 
techniques of analysis that go more in depth.  

2.2.5 Definition and analysis of black spots in Germany 
In Germany, a distinction is made between black spots, black sections and black 
areas. The distinction between these types of accident concentrations is made by 
examining accident maps. 

A black spot is defined as follows: A site is considered a “frequent-accident spot” 
if a large number of accidents occur on a very small section of a road in a road 
network, i.e. if a certain number of accidents is reached or exceeded on the one-
year and/or three-year map. Typical frequent-accident spots may include 
intersections, road/road and road/off-road track junctions, bends, humps, railway 
crossings and inclines. 

A preliminary investigation of a frequent accident spot should be conducted if one 
of the limit values shown in Table 1 is reached or exceeded. The limit values 
suggested in Table 1 apply to the road network both within and outside built-up 
areas as well as motorways. 
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Table 1: Critical values for identification of black spots in Germany. Source: German 
road and transport research association, 2006 

Source of data Critical count of accidents Length of period 

1-year map 5 of similar type 12 months 

3-year map 5 injury accidents 36 months 

3-year map 3 serious injury accidents 36 months 
Kilde: TØI rapport 883/2007 

 

To help identify sites that have a concentration of similar types of accident, a 
distinction is made between the following types of accident: 

• Single vehicle accident (driving accident) 
• Turning-off accidents 
• Turning-into/crossing accidents 
• Pedestrian crossing accident 
• Accident involved stopped or parked vehicle 
• Accidents involving longitudinal traffic (rear-end and head-on collisions) 
• Other accident 

The “other accident” category is used for any accident that does not fit any of the 
other categories. Furthermore, a distinction is made between the following levels 
of accident severity: 

• Fatal accident (at least one person killed within 30 days) 
• Accident in which at least 1 person is seriously injured 
• Accident in which at least 1 person is slightly injured 
• Accident with severe material damage 
• Other material damage accident 

Accidents are classified according to the most serious injury occurring in the 
accident. Accident severity is taken into account in identifying black spots, in that 
the critical values are lower for injury accidents than for all accidents (irrespective 
of severity), and lower for serious injury accidents than for all injury accidents. 

“Frequent-accident lines” (black sections) (FAL) are accident concentrations 
along lengthy sections of road. They are examined in more detail if they occur on 
the (3-YM) accident-type map of accidents with serious personal injury. 

“Frequent-accident areas” (black areas) (FAA) mostly occur in built-up areas 
(relatively large municipalities and in towns) and usually within the residential 
road network. Accident occurrence in (residential) areas is primarily assessed on 
the basis of the three-year map showing the accidents with personal injury. 

Once black spots, black sections and black areas have been identified by means of 
accident maps, a preliminary investigation is performed. The preliminary 
investigation considers three aspects: (1) The impact area of a black spot, section 
or area, that is how far does it extend geographically. The geographic extension is 
determined according to the accident map and is then used in later stages of 
analysis. (2) The length of the period of analysis. Periods of 1, 2 or 3 years are 
used most often. A longer period can be used if there is reason to believe that 
there is a temporal trend in accident occurrence. (3) For black spots that have a 
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large number of accidents (clearly exceeding the minimum values), the trend over 
time is investigated. The main objective is to detect whether the site shows signs 
of improving or whether it is getting worse. This analysis of trends over time is 
used rather than setting a stricter critical value for sites that have large traffic 
volumes. 

Preliminary analysis is followed by a detailed in-depth accident analysis designed 
to identify why the accidents occur and propose treatments. Sites are ranked for 
treatment according to the following criteria. Simple black spots (those that fulfil 
the first criterion listed in Table 1) are ranked according to the number of 
comparable accidents. Black spots identified according to the number of injury 
accidents, are ranked according to the number of serious injury accidents. In case 
of ties, the total number of injury accidents is used. For black spots that have a 
large number of accidents, two ranking criteria are used. One of the criteria is 
based on accident severity, which is summarised in terms of the total accident 
costs. The other criterion is based on the number of similar accidents. 

Black sections are ranked for treatment according to the density of serious injury 
accidents, i.e. the number of serious injury accidents per kilometre of road per 
year. This criterion is also applied to black areas. 

2.2.6 Definition of black spots in Hungary 
In Hungary, two definitions of road accident black spo6ts are used. Outside built-
up areas, a black spot is defined as a location where at least 4 accidents have been 
recorded during 3 years on a road section no longer than 1000 metres. Inside 
built-up areas, a black spot is defined as a location where at least 4 accidents have 
been recorded in 3 years on a road section no longer than 100 metres. 

Search for black spots with scaled accident sites map or data lists is made by 
using the so-called “sliding window” approach. The „window” is either 1000 
metres or 100 metres wide. 

Once black spots have been identified, they are ranked for further study. The aim 
is to perform detailed engineering studies for about 10-15 % of the black spots 
that have been identified statistically. When ranking black spots, traffic volume is 
taken into account, so as to identify those black spots that have a higher then 
normal accident rate. Thus, the Hungarian approach to the definition of black 
spots in practice comes close to a rate and number method. 

2.2.7 Definition and analysis of black spots in Norway 
In Norway, a distinction is made between black spots and black sections. A black 
spot is any location with a length of not more than 100 metres where at least 4 
injury accidents have been recorded in the last 5 years. A black section is any road 
section with a length of not more than 1000 metres where at least 10 injury 
accidents have been recorded during the last 5 years. The period used to identify 
black spots or black sections was recently extended from 4 to 5 years (Statens 
vegvesen, håndbok 115, 2006, draft version). 



State-of-the-art approaches to road accident black spot management and safety analysis of road networks  

14 Copyright © Transportøkonomisk institutt, 2007 
Denne publikasjonen er vernet i henhold til Åndsverkloven av 1961 

Black spots and black sections are identified by applying a sliding window, which 
is fitted to the location of the accidents. Black sections will often consist of 
several black spots that are located near one another. 

Once black spots or black sections have been identified, they are ranked for 
further detailed study. Ranking consists of performing the following four steps: 

1. Estimate the cost of accidents based on the recorded number of accidents. 

2. Estimate the expected number of accidents and the cost of these accidents 
for a similar spot or section that has the best possible road safety standard. 

3. Estimate the probability that the recorded number of accidents exceeds the 
number that can expected at a similar site that has the best possible road 
safety standard. 

4. Rank sites (spots or sections) according to the difference between the cost 
of accidents estimated for the site and the cost of accident for a similar site 
that has the best possible road safety standard (the potential for reduction 
of accident costs). 

According to the Norwegian guidelines, the ranking of sites by their potential for 
safety improvement corresponds to the ranking criterion used in Germany in road 
network safety management (see also chapter 4). 

Step 1 of the ranking analysis is based on the recorded number of accidents and 
on mean values for accident costs. The mean values have been estimated on the 
basis of a large number of accidents in order not to be greatly influenced by 
random fluctuations. 

Step 2 is based on a comprehensive set of normal accident rates for various 
roadway elements. Accident rates are stated as the number of injury accidents per 
million entering vehicles or per million vehicle kilometres. The best possible 
safety standard has been defined as the expected cost of accidents at an accident 
rate 20% below the mean accident rate for a given roadway element. 

To evaluate the probability that the recorded number of accidents exceeds the 
normal expected number of accidents for a similar site, a nomogram has been 
developed showing probability values corresponding to the 20%, 10%, 5% and 
1% levels of statistical significance. These values were determined as the critical 
percentiles of the Poisson distribution. 

Finally, in step 4, sites are ranked according to the size of their potential for safety 
improvement, stated in terms of the reduction of accident costs that can be 
attained if the best possible safety standard is achieved. This ranking is performed 
only for sites that have an abnormally high number of accidents according to the 
statistical test (step 3). 

Sites that are highly ranked are selected for a more detailed engineering study. 
This includes a detailed accident analysis, site visits, observations of road user 
behaviour, etc. Based on the detailed analysis, measures to improve safety are 
proposed and the costs and effects of these are estimated. Priorities for 
implementation of treatments are set according to the net benefit-cost ratio 
estimated for each site. 
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2.2.8 Definition of black spots in Portugal 
In Portugal, black spot detection is carried out for roads belonging to the National 
Road Network, which is managed by the Portugese Highways Agency (Estradas 
de Portugal - EP).  

Two definitions of black spot are currently used by EP: one was set by the Traffic 
Directorate (Direcção-Geral de Viação - DGV); the other was proposed by 
LNEC. According to the definition by DGV, an accident black spot is a road 
section with a maximum length of 200 m, with 5 or more accidents and a severity 
indicator greater than 20, in the year of analysis. No distinction is made between 
intersection and non-intersection accidents. The total number of accidents is used. 
The severity index is calculated by the following weighted sum: 

100 · number of fatalities + 10 · number of serious injuries + Number of slight 
injuries. 

Detection is carried out using a sliding window moving along the road. The 
results are published in the yearly report of the Portuguese Road Safety 
Observatory, a DGV branch. 

An alternative method was proposed by LNEC in 1997 and tested in 1998. 
Currently it is being applied as part of Portuguese Road Safety Plan 2004-2010. In 
this method, a theoretical definition similar to the one presented in section 2.5 is 
adopted: a black spot is a geographical area where the expected accident 
frequency is greater than in similar (not necessarily adjacent) areas, due to the 
influence of road characteristics peculiar to the area. In practice this definition is 
applied differently to intersection and non-intersection accidents. 

As far as non-intersection accidents are concerned, different minimum road 
section lengths are used for single carriageway roads and in dual carriageway 
roads: 250 metres minimum length is used in the first case, and 500 metres in the 
second. In dual carriageway roads the detection is carried out separately in each 
carriageway. 

The road network was divided in 6 classes of road, according to the number of 
carriageways (single or dual), carriageway width of single carriageway roads 
(below or equal to 6.00 m, not greater than 7.00 m, below or equal to 7.75 m, and 
greater than 7.75 m) and number of lanes in each separate carriageway (two lanes 
and three or more lanes). For each class of road, a unique accident prediction 
model is fitted to accident data for a five year reference period. Initially, models 
fitted to 1994-1998 data were applied; currently models fitted to 1999-2003 data 
are being used. Models were developed using the following general equation: 

 

E(λ) = β1 × ADT β2 × CW β3 × e (β4 × ADT/1000)   (6) 

 

Where: 

E(λ) = expected number of accidents in the five year period. 

ADT = Average daily traffic. 

CW = Carriageway width. 
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βi = Parameters estimated with model fitting. 

In most cases, only the average daily traffic was kept as a statistically significant 
explanatory variable. 

In each year, observed accident data from the previous five years are combined 
with the corresponding accident prediction model to estimate the expected 
number of accidents in each 250 m single carriageway (or 500 m dual 
carriageway) road section of each road class. In practice, this is an application of 
the empirical Bayes method, as described by Hauer et al. (2002B). Depending on 
the road class, the worst 1/1000 or 2/1000 cases are selected for detailed safety 
diagnosis and possible intervention. 

Intersections are treated separately. As no applicable accident models have been 
developed yet, the worst 20 intersections in each road class are selected for 
detailed accident analysis. 

2.2.9 Definition of black spots in Switzerland 
In Switzerland a definition of Black Spot Analysis and treatment can be found in 
the standards of the Swiss Association of Road and Transport Experts. 
Regrettably the application of these tools is not institutionalized. However, some 
Departments of Transportation as well as some Cantonal Polices apply it. 
Institutions like the Swiss Council Of Accident Prevention or the Institute For 
Transport Planning and Systems of The Swiss Federal Institute Of Technology 
Zurich apply it for counselling. 

Basically a black spot is defined as a section of a road or an intersection, where 
the number of accidents is “well above” the number of accidents at comparable 
sites. Comparable sites are identified by the following procedure: 

1. The section to be analysed is divided into two different types of road: 
Open road intervals and intersection intervals. Open road intervals have a 
regular length that depends on the type of road. The more important the 
road the longer are the open road intervals (varying between 100m and 
500m). Intersection intervals contain major intersections. 

2. An average open road accident rate for the whole section is calculated 
based on the accidents that occur on open road intervals. 

3. An average intersection accident rate for the whole section is calculated 
based on accidents that occur on intersection intervals. 

4. For both the open road accident rate and the intersection accident rate a 
range is calculated. The calculated accident rates should fit within this 
range (which is basically the confidence interval with a probability of 
error of 5%). This range represents the expected accident rate calculated 
on the basis of the analysed intervals. 

5. So called accident sites are determined. Accident sites are open road 
intervals or intersection intervals where the number of accidents exceeds 
the estimated expected number of accidents based on normal accident 
rates.  
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6. On the last step only the accident sites are compared to so called threshold 
values. The accident sites with accident numbers exceeding the threshold 
values are considered to be black spots. The threshold values vary 
depending on the road type (Table 2) and refer to a period of 2 years.  

The identified black spots are redesigned based on a specific procedure, the so 
called technical accident analysis. The technical accident analysis is based upon 
two separate approaches. These analyses should be conducted by two independent 
engineers. 

1. The infrastructure analysis. It consists in the comparison of the site with 
the standards for the purpose of determining deficiencies. These 
deficiencies are called detected deficiencies. 

2. The analysis of the determinant accidents. It aims at determining probable 
deficiencies that may lead to this type of accident. These deficiencies are 
called probable deficiencies. 

 
Table 2: Threshold values to determine black spots 

Threshold values  
 
Road type and location Number of 

all crashes 
Number of crashes with 
injuries and/or fatalities 

Number of crashes 
with fatalities 

Motorways (per direction) 10 4 2 

Entrance/exit ramps 10 4 2 

Rural roads (intersections and open roads) 8 4 2 

Main roads in built-up areas - open roads 8 5 2 

Main roads in built-up areas - intersections 10 6 2 
Kilde: TØI report 883/2007 

 

The comparison of the detected deficiencies with the probable deficiencies leads 
to the determinant deficiencies. These determinant deficiencies are to be 
corrected. This insight implies that not all detected deficiencies lead to accidents. 
This procedure is intended to minimise the bias of judging a location knowing the 
accident types and vice versa. Moreover it allows a more efficient use of 
resources. 

2.2.10 Comparative analysis of methods for identifying road accident 
black spots 
The various definitions of road accident black spots and the techniques used for 
identifying them reviewed above differ along the following dimensions: 

1. Whether they make a reference to a population of sites (a specific type of 
roadway element or just any location) or not. 

2. Whether black spots are identified by means of a sliding window or by 
reference to a set of given locations. 

3. Whether they make a reference to the normal level of safety or not. 
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4. Whether they are based on the recorded number of accidents or an 
estimate of the expected number of accidents. 

5. Whether accident severity is considered or not. 

6. The length of the identification period used. 

Table 3 provides an overview of the definitions presented above in terms of these 
dimensions. It is seen that none of the definitions listed are identical in all 
respects. 

 
Table 3: Overview of definitions of road accident black spots in selected European 
countries 

 
 
 
Country 

Reference 
to 

population 
of sites 

 
Sliding 
window 
applied 

Reference 
to normal 

level of 
safety 

Recorded 
or expected 
number of 
accidents 

 
Accident 
severity 

considered 

 
Length of 
identific-

ation period 

Austria No Yes, 250m Yes, by 
means of 

critical 
values for 

accident rate 

Recorded, 
minimum 

critical value 
3 – function 

of traffic 
volume 

No 3 years 

Denmark Yes, detailed 
categoris-
ation of 
roadway 
elements 

Yes, for road 
sections – 
variable 
length 

Yes, by 
means of 
accident 

prediction 
models 

Recorded, 
based on 
statistical 

test – 
minimum 4 
accidents 

No 5 years 

Flanders No Yes, 100m No Recorded, 
weighted by 

severity 

Yes, by 
means of 
weights 

3 years 

Germany No No, accident 
maps 

inspected 

No Recorded, 
minimum 

values 3 or 5 

Yes, by 
different 
critical 
values 

1 year (all 
accidents) or 

3 years 
(injury 

accidents) 

Hungary No Yes, 100m 
or 1000m 

No Recorded, 
minimum 4 

No 3 years 

Norway Not when 
identifying 
black spots 

Yes, 100m 
(spot) or 
1000m 

(section) 

Yes, by 
means of 
normal 

accident 
rates for 
roadway 
elements 

Recorded 
higher than 
normal by 
statistical 
test, mini-

mum values 
4 (spots) or 

10 (sections) 

Yes, by 
estimating 
accident 

costs and 
potential 
savings 

5 years 

Portugal Yes, for one 
definition; no 
for the other 

Yes, for one 
definition; no 
for the other 

Yes, for one 
definition; no 
for the other 

Recorded in 
one 

definition 
(minimum 5), 
expected in 

the other 

Yes in one 
definition (by 

severity 
weighting), 
no in other 

1 year or 5 
years 

Switzerland Yes, open 
roads and 
junctions 

No, fixed 
sections of 

variable 
length 

Yes Recorded, a 
set of critical 

values 

Yes, by 
different 
critical 
values 

2 years 

Kilde: TØI report 883/2007 
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Black spots are, in most countries, not identified by sampling units from lists of 
elements belonging to a population of sites, all members of which are in principle 
enumerable, such as “all three legged junctions”, “all horizontal curves with a 
radius less than 200 metres”, or similar. In most countries, black spots are 
identified by applying a sliding window to the locations of accidents, and fixing 
the position of the window at points where it contains the (local) maximum 
number of accidents. In Germany accident maps are used, but in practice this may 
come to nearly the same thing as using a sliding window, since black spots are 
identified according to the locations of accidents. Denmark uses a sliding window 
for road sections, but not for junctions. Portugal uses a sliding window for one of 
its definitions of an accident black spot, not for the other. Switzerland does not 
use a sliding window. 

An accident black spot is generally taken to be a site that has an abnormally high 
number of accidents. This definition suggests that black spots cannot be 
meaningfully identified without some reference to the normal level of safety. 
Some of the currently employed definitions of black spots in European countries 
make an explicit reference to the normal level of safety, but – surprisingly – not 
all definitions make such a reference. References to the normal level of safety are 
generally made by comparing the number of accidents at sites identified as black 
spots to the number of accidents expected for similar sites, estimated by means of 
accident prediction models or by referring to a set of normal accident rates. 

Black spots are in all countries identified in terms of the recorded number of 
accidents. The only exception from this is the black spot definition develop by 
LNEC in Portugal, which relies on the empirical Bays method. Defining black 
spots in terms of the recorded number of accidents is perhaps not very surprising, 
as the long-term expected number of accidents cannot be observed, only 
estimated. In some countries, tests are performed to determine if the recorded 
number of accidents is significantly higher than the normal number expected for 
similar sites. Presumably, sites that do not pass this test (i.e. the test does not 
show a statistically significant difference in the number of accidents: recorded 
versus normal) are deleted from the list of black spots and not treated as 
abnormal. 

Some definitions of black spots consider accident severity, other definitions do 
not. If accident severity is considered, there is no standard way of doing so. Three 
different approaches can be identified. One approach is to set a more stringent 
critical value for the number of serious injury accident accidents than for all 
injury accidents when identifying black spots. A second approach is apply 
weights to accidents at different levels of severity. A third approach is to estimate 
the costs of accidents. These costs vary according to injury severity; hence, costs 
will be higher at sites that have a high proportion of fatal or serious injury 
accidents. 

The length of the period used to identify black spots varies from 1 year to 5 years. 
A period of 3 years is used frequently. Research by Cheng and Washington (2005) 
shows that the gain in the accuracy of black spot identification obtained by using 
a longer period of 3 years is marginal and declines rapidly as the length of the 
period is increased. There is little point in using a longer period than 5 years. 
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Table 4 illustrates how varying the length of the identification period influences 
the mean number of accidents observed during a second period of identical length 
for identification periods of 1, 2, 3 or 4 years. The table is based on Norwegian 
data referring to road sections of 1 kilometre on national roads. The road sections 
were fixed. No sliding window was applied. 

As can be seen from Table 4, if a period of only 1 year is used, there is a 
considerable regression-to-the-mean effect for all counts of accidents from 0 to 
10. For 6 out of the 11 different counts of accidents included in Table 4 (counts of 
0, 1, 2 etc) this effect is reduced when the length of both periods is extended to 2 
years. Lengthening the periods to 3 years further reduces regression-to-the-mean 
(compared to 2+2 years) for 7 out of 11 different counts of accidents. Lengthening 
from 3+3 to 4+4 years, however, reduces the regression-to-the-mean effect for 
only 2 of the 11 different counts of accidents included in Table 4. 

 
Table 4: Effects of varying the length of the period of identification on the stability of 
accidents counts in a subsequent period of identical length 

 Mean number of accidents during “second” period for sites that had 0,1,2 etc 
accidents during the “first” period for periods of different length 

Count of 
accidents in first 

period 

 
 

1 year + 1 year 

 
 

2 years + 2 years 

 
 

3 years + 3 years 

 
 

4 years + 4 years 

0 0.099 0.166 0.172 0.137 

1 0.349 0.495 0.443 0.404 

2 0.834 0.936 1.053 0.771 

3 1.404 1.541 1.616 1.465 

4 2.207 2.054 2.455 2.281 

5 3.500 3.606 3.327 2.020 

6 4.778 4.536 3.448 2.935 

7 3.556 5.167 5.750 4.154 

8 7.375 5.214 5.750 3.000 

9 8.333 5.500 6.667 7.143 

10 3.333 7.700 12.333 4.667 
Kilde: TØI report 883/2007 

 

Given the lack of standardisation and the many dimensions that characterise 
definitions of road accident black spots, the question must be asked: Are any of 
the definitions  in any sense “better” than the others? To answer this question, one 
of course needs criteria specifying what constitutes a “good” definition of a road 
accident black spot.  Such criteria have evolved over the past 20 years, following 
pioneering work by Hauer and Persaud (1984) who pointed out difficulties in 
reliably identifying black spots by using the recorded number of accidents as the 
only criterion. Overgaard Madsen (2005) discusses in great detail criteria for 
identifying black spots. He proposes that an adequate definition of a hazardous 
road location should satisfy three, or possibly four, criteria: 

1. It should control for random fluctuations in the number of accidents. 
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2. It should account for as many of the factors that are known to influence 
road safety as possible. 

3. It should identify sites at which fatal and serious injury accidents are over-
represented. 

4. It should identify sites at which local risk factors related to road design 
and traffic control make a substantial contribution to accidents. 

The first of these criteria suggests that the identification of a black spot should 
rely on the expected number of accidents, not the recorded number. In practice, 
this would appear to be difficult, since the expected number of accidents cannot 
be observed, but has to be estimated. However, a method has now been developed 
that permits the expected number of accidents to be estimated for a single 
location: the empirical Bayes method. By applying this method, it is in principle 
possible to identify hazardous road locations in terms of the number of accidents 
expected to occur in the long run at each such location. 

The second and fourth criteria also suggest that the identification of road accident 
black spots should rely on the Empirical Bayes method, supported by a 
multivariate accident prediction model. By developing an accident prediction 
model, it is possible to account for a number of factors that explain systematic 
variation in the number of accidents, including traffic volume, various 
characteristics of road design and elements of traffic control (like speed limits). It 
is not realistic to expect an accident prediction model to include and accurately 
estimate the effects of all factors that influence the number of accidents; the 
factors that are not included in such models will typically be local risk factors, 
which, due to their site-specific nature, cannot be detected statistically in a 
multivariate model. These local factors may cause a site to have a higher expected 
number of accidents than predicted by an accident prediction model. The third 
criterion implies that the identification of black spots should either rely on fatal or 
serious accidents only, or assign a greater weight to these accidents than to slight 
injury accidents or property-damage-only accidents. This criterion is relevant to 
the extent that road safety policy seeks to prevent the most serious accidents. 

It is useful to make a distinction between the definition of black spots and the 
identification of them. In some operational definitions of the concept, this 
distinction is blurred. However, as will become clear in the simulation study 
reported below, the distinction is important. 

A state-of-the-art definition of a road accident black spot will be proposed in 
section 2.5. As far as is known, no European country at present consistently 
employs the state-of-the-art definition or state-of-the-art techniques for 
identifying black spots. It is therefore necessary to develop a step-by-step 
description of the state-of-the-art and support this description by studies that show 
that the proposed state-of-the-art approach performs better than alternative 
approaches. This description of the state-of-the-art  is presented below in the form 
of a simulation and a review of some key studies. 
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2.3 Limitations of traditional approaches: identifying black 
spots 
The study presented here is strongly inspired by similar studies made many years 
ago by Hauer and Persaud (1984), Hauer and Quaye (1990) and Hauer, Quaye and 
Liu (1993). The study shows the limitations and pitfalls of identifying road 
accident black spots in terms of the recorded number of accidents only. 

Assume that black spots are to be identified from a population of 1,000 sites. 
Table 5 lists this population, stratified into homogeneous groups with respect to 
the expected number of accidents. In practice, the expected number of accidents 
in a population of sites is a continuous variable, that cannot readily be stratified 
into homogeneous groups as shown in Table 5. The stratification is used for 
expository purposes only. 

The first column shows the count of accidents. The distribution of sites by the 
number of accidents in each group was generated by assuming that accidents are 
Poisson distributed. This is equivalent to assuming that a perfect accident 
prediction model has been developed, which is able to explain all systematic 
variation in the number of accidents and discriminate perfectly between the 
groups formed in Table 5. In practice, of course, a perfect model is never 
developed; in the following it is assumed that only the column to the right in 
Table 5 is known. The groups are not known – they serve only to model the 
accident generating process if that process were perfectly known. 

The column to the right shows the distribution of all 1,000 sites by the recorded 
number of accidents. The mean number of accidents for the population as a whole 
is 0.779. The variance is 2.003. If accidents were distributed at random, the 
variance would equal the mean (0.779). Thus, in this group 61% of the variation is 
systematic [(2.003 – 0.779)/2.003], 39% is random (0.779/2.003). 

Assume that sites whose expected number of accidents is 4 are defined as black 
spots. As shown in Table 5, there were 50 black spots in the population. Accidents 
at the black spots represent 25% of the total number of accidents.  
Table 5: A population of 1,000 sites stratified according to the expected number of 
accidents 

 Groups according to the expected number of accidents  

Count 0.2 0.5 1.0 3.0 4.0 Total 

0 532 61 37 5 1 636 

1 106 30 37 15 4 193 

2 11 8 18 22 7 66 

3 1 1 6 22 10 40 

4 0 0 2 17 10 29 

5   0 10 8 18 

6    5 5 10 

7    2 3 5 

8    2 1 3 

9     1 1 

Total 650 100 100 100 50 1000 
Kilde: TØI report 883/2007 
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How can we best identify the black spots in this population? By assumption, the 
road safety manager knows only the rightmost column in Table 5, not the data for 
each of the groups. In other words: the recorded number of accidents and its 
variation between sites is known; the expected number of accidents for each site is 
unknown. Hence, to identify the black spots, the only option is to rely on the 
recorded number of accidents. It seems logical to identify sites that had 4 or more 
recorded accidents as black spots. By this criterion, 66 sites will be identified as 
black spots: 29 that have 4 accidents, 18 that have 5 accidents, and so on. Among 
these sites, however, only 28 will be true black spots, meaning their expected 
number of accidents is 4. These are the 28 sites that recorded at least 4 accidents 
whose expected number of accidents is also at least 4. These sites are found in the 
column for sites with an expected number of accidents equal to 4, and consist of 
sites that recorded 4 accidents (10), 5 accidents (8), and so on, up to 9 accidents. 
The remaining 38 sites will be false positives. These sites consist of sites that 
recorded 4 or more accidents, but have an expected number of accidents less than 
4. We may now define four categories of sites: 

1. Correct positives: These are sites at which the expected number of 
accidents exceeds the critical value selected and the recorded number of 
accidents exceeds the same critical value. 

2. False positives: These are sites at which the expected number of accidents 
does not exceed the critical value selected, but the recorded number of 
accidents does exceed this value as a result of random variation. 

3. Correct negatives: These are sites at which both the expected and recorded 
number of accidents are lower than the critical value selected. 

4. False negatives: These are sites at which the expected number of accidents 
exceeds the critical value selected, but the recorded number of accidents 
does not, due to random variation. 

Table 6 shows the number of sites in these groups as a function of the recorded 
number of accidents used to identify black spots. 

 
Table 6: Number of correct negatives, false negatives, correct positives and false 
positives as a function of the critical number of accidents. Sites with an expected number 
of accidents of 4 are defined as black spots 

Critical 
number 

Correct 
negatives 

False 
negatives 

Correct 
positives 

False 
positives 

Total sites 
identified 

1 635 1 49 315 364 

2 823 5 45 127 172 

3 883 12 38 67 105 

4 912 22 28 38 66 

5 931 32 18 19 37 

6 941 40 10 9 19 

7 946 45 5 4 9 

8 948 48 2 2 4 

9 950 49 1 0 1 
Kilde: TØI report 883/2007 
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If all sites that have recorded an accident at all are included, 364 sites will be 
identified. The great majority of these, 315 sites, will be false positives. There will 
be 49 correct positives and 1 false negative. Thus even if the criterion is set as low 
as it could possibly be – a single accident – there will still be one black spot that is 
not detected. 

If more stringent critical values are adopted, fewer sites will satisfy them. A 
growing proportion of the sites identified will be correct positives, but this is 
accomplished at the cost of a growing number of false negatives. At nine 
accidents, only a single site is identified, but 49 sites go undetected. 

It can be seen that no criterion for identifying hazardous road locations is perfect. 
The reason is very simple. We cannot observe the expected number of accidents. 
We can only observe the recorded number of accidents, which is always partly the 
outcome of chance, partly the outcome of very many factors that systematically 
influence the expected number of accidents. 

The performance of the various criterion values can be assessed quantitatively in 
terms of screening performance criteria developed in epidemiology (Deeks 2001, 
Rothman and Greenland 1998). Two of the most common criteria for diagnostic 
tests are sensitivity and specificity. They are defined as follows: 

Sensitivity = 
positives ofnumber  Total
positivescorrect  ofNumber  

Specificity = 
negatives ofnumber  Total
negativescorrect  ofNumber  

The total number of positives equals the number of correct (true) positives plus 
the number of false negatives. With reference to Table 6, the sensitivity of using 4 
accidents as the diagnostic criterion is 28/50 = 0.56. The specificity of this 
criterion is 912/950 = 0.96. The performance of different values for the critical 
number of accidents used to identify a black spot can now be assessed in terms of 
a receiver operating characteristic curve (ROC-curve). Such a curve, derived from 
the data in Table 4, is shown in Figure 4. 

The false positive rate is plotted along the abscissa. This is equal to 1 minus 
specificity. The true positive rate (sensitivity) is plotted on the ordinate. If the 
diagnostic test discriminates well, the ROC-curve will rise steeply, close to the 
ordinate and flatten out near the top of the diagram. If the diagnostic test is 
uninformative, the ROC-curve will follow the diagonal line indicated in Figure 4. 

It is desirable to minimise the false positive rate and to maximise the true positive 
rate. This involves a trade-off; one may diminish the false positive rate by 
accepting a lower true positive rate, and vice versa. The optimal criterion is the 
one that maximises the sum of sensitivity and specificity. For Figure 4, this is to 
treat all sites with 2 or more accidents as potential black spots. This is marginally 
better than using 3 accidents as the criterion. 

 



State-of-the-art approaches to road accident black spot management and safety analysis of road networks 

Copyright © Transportøkonomisk institutt, 2007 25 
Denne publikasjonen er vernet i henhold til Åndsverkloven av 1961  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False positive rate (1 - specificity)

Tr
ue

 p
os

iti
ve

 ra
te

 (s
en

si
tiv

ity
)

1 (364)
2 (172)

3 (105)

4 (65)

5 (37)

6 (19)

ROC-curve for an uninformative test (sensitivity + specificity = 1)

Line of symmetry (sensitivity = specificity)

 
Kilde: TØI report 883/2007 

Figure 4: ROC-curve for detecting road accident black spots. Simulated data 

 

In practice, the criterion defining a black spot is rarely, if ever, based on an 
evaluation of the diagnostic performance of the criterion. Ideally speaking, an 
optimal criterion of deviance ought to be chosen. On the other hand, practical 
considerations may prevent this. In the example above, if all sites with 2 or more 
accidents are treated as black spots, 172 sites would be identified, of which 127 
would be false positives. This would create a considerable amount of work in 
performing accident analysis for the purpose of diagnosing problems at each site 
and, again ideally speaking, reliably identify the true and false black spots. Thus, 
the choice of a criterion for identifying black spots cannot be based on a statistical 
criterion only. No statistical criterion can reliably identify only correct black 
spots, and include all of them, as the criterion would always be applied to a 
population of sites containing a mixture of random and systematic variation in the 
number of accidents. Indeed, the very idea of selecting black spots from a 
population of sites containing random variation only is a contradiction in terms, as 
a true black spot should always be defined as having a higher expected number of 
accidents than other, similar sites. In a completely homogeneous population, by 
definition no such sites would exist. One must therefore always identify black 
spots in a heterogeneous population, that contains unexplained systematic 
variation in accident counts, with random variation on top of this. 

This means that any criterion will be imperfect: Sites identified as black spots will 
always contain a mixture of correct positives and false positives. Besides, there 
will always be a number of false negatives. The number of sites that are true or 
false black spots will almost never be known. 

These difficulties are compounded if black spots are identified by applying a 
sliding window method, that determines the location of a black spot according to 
the location of the accidents, rather than by sampling locations from a known 
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sampling frame allowing sites to be enumerated. This was shown empirically by 
Elvik (1988). Table 7 reproduces some of his findings. 

The first column shows the distribution of 100 1-kilometre road sections by the 
number of accidents. The mean number of accidents was 2.44. The variance was 
4.37. The distribution does not differ significantly from a negative binomial 
distribution. The next column shows the results of applying a sliding window of 
length 1-kilometre to the same 100 kilometres of road as shown in the first column. 
It is seen that the tail of the distribution becomes substantially longer. The number 
of road sections with 0 accidents now consists of a mixture of “rump” sections of 
varying length interspersed among the sections where accidents have been recorded. 
Some of these rump sections will be shorter than 1 kilometre, some longer. If we 
take sections with 5 or more accidents as black, there are 15 such sections in the 
population of fixed sections, but 19 sections according to the sliding window 
approach. Using the sliding window artificially inflates the number of black 
sections, and makes each section look more black (i.e. having a higher recorded 
number of accidents) than it really is. The findings are the same when fixed and 
sliding 4-kilometre sections are compared. The number having 5 or more accidents 
is 14 when fixed sections are used, 19 when sliding sections are used. 
 
Table 7: Effects of using a sliding window approach on the number of black spots 
identified 

 
Number of 
accidents 

 
Fixed 1-kilometre 
sections, 4 years 

Sliding 1 
kilometre 

sections, 4 years 

 
Fixed 4-kilometre 
sections, 1 year 

Sliding 4-
kilometre 

sections, 1 year 

0 19 Not defined 11 Not defined 

1 19 9 25 9 

2 19 13 23 12 

3 18 11 16 16 

4 10 11 11 12 

5 7 7 6 8 

6 3 4 5 5 

7 3 3 3 5 

8 1 0  0 

9 0 2  0 

10 0 2  1 

11 1 0   

12  0   

13  0   

14  1   

Total sections 100 65 100 68 

Mean per section 2.44 3.87 2.44 3.59 

Variance 4.37 6.59 3.19 3.57 
Kilde: TØI report 883/2007 

 
Theoretical work by Hauer and Quaye (1990) confirms these findings. Hauer and 
Quaye applied a sliding window approach to a fictitious population of sites of 
which 900 sites had an expected number of accidents of 1, 90 had an expected 
number of accidents of 2 and 10 had an expected number of accidents of 3. Within 
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each group, the recorded number of accidents was assumed to be Poisson 
distributed around the mean value. A critical value of 5 accidents was used to 
identify deviant sites. 

If fixed sections are used, it can be estimated that 10 sites will be identified as 
positives. If, however, a sliding window is used, 34 sites will be identified, of 
which the great majority will be safer than average. Thus, using a sliding window 
greatly inflates the number of false positives identified as black spots. 

Applying a sliding window of standard length 1 (arbitrary units) to the fictitious 
data in Table 5 confirms that this method for identifying black spots artificially 
inflates their number. Using 4 accidents inside the window as critical number, 113 
black spots were identified. 42 of these were correct positives, the rest were false 
positives (71 sites in total). When fixed road sections are used, a critical value of 
4 accidents identifies 66 sites, of which 28 correct positives and 38 false positives. 
Thus, use of a sliding window has the advantage of identifying more correct 
positives (42 versus 28), but the disadvantage of identifying more false positives 
(71 versus 38). In terms of the epidemiological criteria, the sliding window 
approach (critical value 4) has a specificity of 0.925 and a sensitivity of 0.840. 
The corresponding values for fixed sections (critical value 4) are 0.96 and 0.56, 
respectively. 

2.4 Limitations of traditional approaches: analysis of black 
spots 
The limitations of traditional approaches to the analysis of black spots are 
reviewed by Elvik (2006). The following section draws on his review. 

No matter how accident black spots are identified statistically, the identification 
will not be perfect in the sense that all sites identified have a high expected 
number of accidents and none of them have a high recorded number of accidents 
due to chance mainly. While progress has been made in developing techniques 
that keep the number of false positives down, any set of hazardous road locations 
identified statistically will contain both true and false positives. Ideally speaking, 
a detailed analysis of accidents at sites that are identified as hazardous should be 
able to discriminate between the sites that are true positives and those that are 
false positives. However, research sheds doubt on this assumption.  

Danielsson (1988) shows that one commonly used criterion for identifying a truly 
hazardous road location, namely the overrepresentation of a particular type of 
accident is vulnerable to regression-to-the-mean bias, because overrepresentation 
could be attributable mainly to chance. Suppose, for example that at site 1, there 
were 1 accident of type A, 2 accidents of type B, 1 accident of type C, and 1 
accident of type D. Since no type of accident is clearly dominant, it might be 
concluded that site 1 is not a true positive. At site 2, on the other hand, there were 
4 accidents of type A, 1 accident of type B and no accidents of types C or D. 
Since accidents of type A seem to be dominant at site 2, it is tempting to conclude 
that site 2 is a true positive. If a treatment designed to reduce accidents of type A 
is then introduced, it will often be observed that accidents of that type are reduced 
more than accidents of other types. In principle, such an apparently systematic 
trend could be largely attributable to chance. 



State-of-the-art approaches to road accident black spot management and safety analysis of road networks  

28 Copyright © Transportøkonomisk institutt, 2007 
Denne publikasjonen er vernet i henhold til Åndsverkloven av 1961 

In a similar vein, Jarrett, Abbess and Wright (1988) compared regression-to-the-
mean for a sample of high-accident sites in London that had undergone analysis 
and been selected for treatment, but where the treatment had not been 
implemented, to a sample of sites that had not been selected for treatment. If 
analysis and selection for treatment successfully identifies true black spots, one 
would expect the regression-to-the-mean effect to be smaller at these sites than at 
similar sites that had not been analysed and selected for treatment. The study did, 
however, not find such a difference. The size of regression-to-the-mean was very 
similar in the two samples. 

It can be shown by means of simulation that regression-to-the-mean will be 
greater at false black spots than at true black spots. For this purpose, the expected 
regression-to-the-mean effect has been estimated for true and false black spots 
based on the hypothetical data in Table 5. Results are shown in Table 8. 

Suppose that a count of 4 accidents is used to identify black spots. As shown in Table 
5, 66 locations will then be identified. 28 of these locations will be correct positives, 
i.e. their expected number of accidents equals 4. The remaining 38 locations will be 
false positives, i.e. their expected number of accidents is less than 4. 
 
Table 8: Expected regression-to-the-mean for true and false black spots based on 
simulated data 

 False positives (mean < 4) Correct positives (mean = 4) 

 
Critical 
accident 
count 

 
Mean 

number of 
accidents 

Mean 
expected 

number of 
accidents 

 
Regression-
to-the-mean 

(%) 

 
Mean 

number of 
accidents 

Mean 
expected 

number of 
accidents 

 
Regression-
to-the-mean 

(%) 

3 4.06 2.67 34 4.68 4.00 15 

4 4.89 2.86 41 5.29 4.00 24 

5 5.79 3.00 48 6.00 4.00 33 

6 6.67 3.00 55 6.80 4.00 41 

7 7.50 3.00 60 7.60 4.00 47 

8 8.00 3.00 62 8.50 4.00 53 

9    9.00 4.00 56 
Kilde: TØI report 883/2007 

 
The mean recorded number of accidents for the 28 correct positives will be 5.29. 
Since the assumption has been made that accidents are randomly distributed 
around the mean value, the number of accidents at these sites can be expected to 
regress to the mean value of 4. The expected regression-to-the-mean effect is 24 
percent. For the false positives, the mean recorded number of accidents will be 
4.89. This is expected to regress to a mean of 2.86. The expected regression-to-
the-mean effect in this case is 41 percent. 

Thus, the finding of Jarrett, Abbess and Wright casts serious doubt on whether 
accident analysis and selection for treatment was able to successfully discriminate 
between the false and correct positives.  

A commonly applied criterion to discriminate between true and false black spots 
is the presence of a dominant accident pattern. A dominant accident pattern is 
characterised by the overrepresentation of a particular type of accident. It is 
therefore of some interest to probe whether there is any difference in the 
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regression-to-the-mean effect between hazardous road locations that have a 
dominant accident pattern and those that do not. 

In order to test this, data for 1-kilometre road sections on national roads in 
Norway were used. Data for two 4-year periods were used. Sections that during 
the first period recorded 4 or more accidents were identified as hazardous. A 
distinction was made between the following types of accident: 

• Head-on collisions 

• Single vehicle running off the road 

• Rear-end collisions 

• Intersection accidents 

• Pedestrian accidents 

For the road system as a whole, single vehicle running off the road made up 36% 
of the accidents, rear-end collisions 25%, head on collisions 10%, intersection 
accidents 10% and pedestrian accidents 5%. Various other types of accident, not 
specified here, made up the rest. 

A hazardous road section was considered to have a dominant accident pattern if 
any the types of accidents listed above represented at least 60% of all accidents on 
the section. Sections where none of the accident types represented as much as 
60% of all accidents were not considered to have a dominant accident pattern. 
Table 9 shows the mean recorded number of accidents for sites with and without a 
dominant accident pattern during the two 4-year periods used in analysis. 

A total of 700 sections were identified as hazardous, i.e. they had at least 4 injury 
accidents in the first 4-year period. 292 of these sections had a dominant accident 
pattern. i.e. one type of accident accounted for at least 60% of all accidents. 408 
sections did not have a dominant accident pattern. 

The difference between these groups with respect to regression-to-the-mean 
during the next four years was small, 22% for the group with a dominant accident 
pattern compared to 26% for the group without a dominant accident pattern. This 
suggests that the dominance of a particular type of accident does not necessarily 
persist over time. The pattern is broadly speaking the same for all types of 
accident. In most cases, running-off-the-road accidents forming an exception, 
there is a tendency for the regression-to-the-mean effect to be slightly smaller 
when there is dominant accident pattern than when this is not the case. 

The probability that an accident pattern characterised by the dominance of a 
certain type of accident may arise by chance is not negligible. By applying a 
binomial model (each accident is either of the selected type or of any other type), 
it can be estimated that 138 of the 292 sites with a dominant accident pattern can 
be expected to arise from chance alone. Hence, a sizable proportion of these sites 
are false positives and a large regression-to-the-mean effect should be expected. 
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Table 9: Regression-to-the-mean at hazardous road sections in Norway for sections with 
and without a dominant accident pattern 

  Mean number of injury 
accidents per section 

 

 
Group of sections 

Number of 
sections 

First four 
years 

Second four 
years 

Regression-to-
the-mean (%) 

All sections 700 6.82 5.16 -24% 

Sections with dominance of any type of 
accident 

292 6.94 5.39 -22% 

Sections without dominance of any type 
of accident 

408 6.74 5.00 -26% 

Dominance of rear-end collisions 172 8.13 6.84 -16% 

No dominance of rear-end collisions 528 6.39 4.62 -28% 

Dominance of running-off-the road 76 4.96 2.47 -50% 

No dominance of running-off-the road 624 7.05 5.49 -22% 

Dominance of intersection accidents 33 5.73 4.97 -13% 

No dominance of intersection accidents 667 6.87 5.17 -25% 
Kilde: TØI report 883/2007 

 

Harwood et al (2002) point out that some sites with a high number of accidents do 
not have readily identifiable accident patterns. A given deficiency in highway 
design or traffic control can contribute to accidents at one site, while at another 
site with a similar deficiency, there are no accidents or no clear pattern of 
accidents associated with the deficiency. Finally, a given deficiency can 
contribute to different accident types. This suggests that an analysis of accidents 
designed to identify true black spots must go beyond merely identifying a 
dominant accident pattern. 

A new approach to accident analysis, designed to be better able to discriminate 
between false and true black spots will be discussed in section 2.7. 

Elvik (1997) compared the findings of studies that have evaluated the effects of 
black spot treatment, depending on how well studies controlled for various 
confounding factors. He found that the effect attributed to treatment declined as 
studies controlled for more confounding factors. In the best controlled studies 
(controlling for regression-to-the-mean, long-term trends and accident migration), 
the effect on safety attributed to treatment was zero. This suggests that the 
treatments did not successfully address risk factors contributing to accidents, or 
that the accidents were mainly the result of chance variation. 

Brüde and Larsson (1982) point out the crucial role that analyst expectations may 
play in the analysis of accidents at black spots: “One might hope that the accident 
analysis together with on-site inspection should enable us to decide whether a 
high recorded number of accidents is due to chance or to deficiencies in design or 
traffic control. In practice this may not be possible. It is nearly always possible to 
point out some deficiency – in particular this is so when we know that a large 
number of accidents have occurred.” Thus, even if no clear pattern is found, or no 
specific risk factors contributing to accidents can be identified, the temptation 
may be almost irresistible to conclude that there has got to be something wrong 
about the place, since there have been so many accidents there. It is almost always 
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possible to point out some deficiency in design or traffic control. It is well known 
from psychological research that analyst or experimenter expectancies regarding 
the outcome of a study can exert a major influence on the conclusions drawn from 
it (Rosenthal and Rubin 1978). In summary, research points to the possibility that: 

1. The frequently used criterion for a true black spot – the presence of a 
clearly identifiable pattern of accidents characterised by the dominance of 
a particular type of accident – may not effectively separate true from false 
black spots. 

2. Sites that have been analysed and selected for treatment do not necessarily 
have a higher long-term expected number of accidents than similar sites 
that have not been analysed and selected for treatment.  

3. Treatments do not appear to always successfully address risk factors 
contributing to accidents. 

4. Analysts may find it difficult to resist the temptation to conclude that a site 
at which a high number of accidents have been recorded must have some 
deficiency in design or traffic control, even if no clear accident pattern 
pointing to such deficiencies can be identified. The idea that an analysis 
might be inconclusive is unappealing and resisted. 

In short, an approach to accident analysis is needed that provides clearer criteria 
for identifying true black spots, recognises the possibility that analysis might be 
inconclusive, and minimises the role of analyst expectancies. 

2.5 Theoretical definition of a black spot 
Most currently employed definitions of road accident black spots are theoretically 
unsatisfactory, mainly because they are not clear about whether black spots 
should be defined in terms of the expected number of accidents or in terms of the 
recorded number of accidents. From a theoretical point of view, there can be no 
doubt at this point: We are seeking to identify sites whose expected number of 
accidents is abnormally high, not sites that happen to have recorded a high 
number of accidents due to chance. Thus, the following theoretical definition of 
an accident black spot is proposed. 

A road accident black spot is any location that: 

1. Has a higher expected number of accidents, 

2. Than other similar locations, 

3. As a result of local risk factors. 

Black spots are identified from a known population of sites. Similarity is assessed 
in terms of the values for explanatory variables in accident prediction models. 
Thus, two sites can be treated as similar if, for example, they have the same traffic 
volume, the same speed limit, the same number of lanes, the same number of 
junctions per kilometre, and so on. When identifying black spots, comparison to 
other similar locations ensures that the explanatory factors included in accident 
prediction models are controlled for. Controlling for these factors is essential, as 
we do not want to identify a site as a black spot simply because it has a higher 
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traffic volume than another site. It is normal for the number of accidents to 
increase as traffic volume increases. 

The theoretical definition given above implies that the only method that can 
reliably identify black spots is one that facilitates the identification of the 
contribution of the three main factors to the expected number of accidents for a 
single site. The Empirical Bayes method is one such method, but it is possible that 
other methods could provide adequate approximations. EB-estimates of safety do, 
however, allow the relative contributions of random variation, general factors 
(included in the accident prediction model) and local factors to the observed 
number of accidents to be identified. 

2.6 Statistical identification of black spots: a comparative 
analysis 
If one accepts the theoretical definition of a road accident black spot proposed 
above, a number of expectations regarding empirical methods for identifying 
black spots follow. These include: 

1. The EB-method is likely to give the most reliable identification of black 
spots, i.e. minimise the number of false positives and false negatives. 

2. Black spots are likely to be most reliably identified in terms of the relative 
contribution of local risk factors to the recorded number of accidents. 

To evaluate whether these implications hold in practice, a comparative study was 
made of the following criteria for statistical identification of black spots: 

1. Upper tail accident count: Sites whose recorded number of accidents 
belonged to the upper 2.5% of the distribution during the first four years 
were identified as hazardous road locations. Sites that continued to belong 
to the upper 2.5% in the second period were classified as correct positives. 
Sites that dropped out of the list were classified as false positives, new 
sites entering the list were classified as false negatives. The procedure was 
repeated using the upper 1% and the upper 5% of the distribution as 
criteria. 

2. A critical accident rate: A period of four years was used. Accident rate 
was defined as the number of injury accidents per million vehicle 
kilometres. Sites that had the 2.5% highest values for the accident rate 
were classified as black spots (irrespective of the number of accidents at 
these sites). The accident rate for the same sites were observed for the next 
four years. Sites that continued to belong to the top 2.5% were classified 
as correct positives. Sites whose accident rate dropped below the top 2.5% 
were classified as false positives. Sites that did not belong to the top 2.5% 
in the first four years, but did so in the second four years were classified as 
false negatives. The procedure was repeated using the upper 1% and upper 
5% of the distribution as criteria. 

3. A critical rate and number of accidents: A period of four years was again 
used. Sites that recorded a number of accidents greater than the upper 
2.5%, 1% or 5% values in the population of sites, and had a higher than 
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average accident rate were classified as black spots. Average accident rate 
referred to the overall average for the whole population of sites, not the 
average for the upper 2.5%, 1% or 5%. Sites that during the second four 
year period continued to satisfy both criteria were classified as correct 
positives. Sites that in the second four year period failed to satisfy one or 
both criteria were classified as false positives. Sites that did not satisfy the 
criteria in the first four years, but did so in the second four years, were 
classified as false negatives. 

4. Upper 2.5% EB-criterion: For each site, the EB-estimate of the expected 
number of accidents for that site was developed, based on four years of 
data (and an accident prediction model). Sites with the 2.5% highest 
estimates were classified as black spots. If the EB-estimate for these sites 
in the second four year period remained in the upper 2.5%, the sites were 
classified as correct positives. Sites that dropped out of the upper 2.5% 
were classified as false positives, new sites that entered the list were 
classified as false negatives. The procedure was repeated using the upper 
1% and 5% as critical values. 

5. The EB-dispersion criterion (potential accident reduction): For each site, 
an EB-estimate of safety was developed (based on an accident prediction 
model). The recorded number of accidents, for sites that had a higher 
recorded number of accidents than the number predicted according to the 
model, was decomposed into contributions from three factors: (a) 
Randomness, (b) General risk factors (included in model), and (c) Local 
risk factors. Sites were sorted by the contribution from local factors; sites 
at the top 2.5% (for the whole population of sites) are classified as black 
spots, provided the recorded number of accidents was 4 or more. Sites that 
remained in the upper 2.5% in the second period were classified as correct 
positives. Sites that dropped out were treated as false positives, new sites 
entering were treated as false negatives. The procedure was repeated using 
1% or 5% as the critical values, but keeping the critical number of 
accidents constant 

Data for 1-kilometre sections of national roads in Norway were used to assess all 
definitions. Data for two periods of four years were used. These data covered the 
period from 1997 to 2004. Hazardous road locations were identified on the basis 
of data referring to the first four years (1997-2000). To assess whether the 
hazardous road locations were true or false positives, data referring to the second 
four year period were used (2001-2004). The idea was that true positives will 
persist in having a bad safety record, whereas false positives will regress towards 
a more normal safety record. There will also be some false negatives, i.e. sites not 
detected in first four years that are detected in the second four years. 

An accident prediction model was developed based on data referring to the first 
four years. The model included the following explanatory variables: AADT, 
speed limit (km/h), number of lanes, number of intersections per kilometre of road 
and a dummy for trunk roads. The model was of the form: 

E(λ) = e xQ ii∑γβα    (7) 
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The estimated normal number of accidents, E(λ), is a function of traffic volume, 
Q, and the other explanatory variables, Xi (i = 1, 2, 3, … n). The data referred to 
road sections of 1 kilometre. Location reference data were available for all 
sections. The number of sections included in the study was 19,623. Sections 
shorter than 1 kilometre and sections that did not exist in the whole period were 
not included. Table 10 presents the results of the analysis. 

 
Table 10: Comparison of alternative definitions of road accident black spots in terms of 
epidemiological criteria. 

 
Identification criterion 

Correct 
negatives 

Correct 
positives 

False 
negatives 

False 
positives 

 
Sensitivity 

 
Specificity 

 Top 1 % of distribution   

Accident count 19272 134 109 108 0.551 0.994 

Accident rate 19232 16 188 187 0.078 0.990 

Accident rate and count 19340 86 94 103 0.478 0.995 

EB-estimate of accidents 19378 130 53 62 0.710 0.997 

EB dispersion criterion 19311 62 121 129 0.339 0.993 

 Top 2.5 % of distribution   

Accident count 18788 285 262 288 0.521 0.985 

Accident rate 18726 53 418 426 0.113 0.978 

Accident rate and count 18928 186 236 273 0.441 0.986 

EB-estimate of accidents 18981 338 152 152 0.690 0.992 

EB dispersion criterion 19070 105 195 253 0.350 0.987 

 Top 5 % of distribution   

Accident count 18065 464 526 568 0.469 0.970 

Accident rate 17838 144 805 836 0.152 0.955 

Accident rate and count 18308 307 474 534 0.393 0.972 

EB-estimate of accidents 18429 692 235 267 0.746 0.986 

EB dispersion criterion 18989 136 219 279 0.383 0.986 
Source: TØI-report 883/1007 

 

The total number of positives equals the number of correct (true) positives plus 
the number of false negatives. The total number of negatives equals the number of 
correct negatives plus the number of false positives. 

To compare the performance of the different techniques for identifying hazardous 
road sections, the values of sensitivity and specificity can be added, since a good 
diagnostic test should score high on both criteria. Thus, for the upper 1 % of the 
distribution, using the accident count as criterion, gives a total diagnostic score of 
0.551 + 0.994 = 1.545. For the EB-estimate of the expected number of accidents, 
the corresponding value is 1.707. 

The empirical Bayes technique is found to perform best at all levels of stringency 
(1 %, 2.5 %, 5 %). Using the accident count performs second best. It is not 
surprising that the EB-criterion, which is the only one that is strictly based on 
estimates of the expected number of accidents for each site, performs better than 
the other criteria for identifying hazardous road locations. Somewhat surprisingly, 
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the EB dispersion criterion, which has strong theoretical arguments in its favour, 
does not perform well. The major problem associated with this criterion appears 
to be a large number of false positives. This may be the result of a temporal 
instability in the contribution of local risk factors to accidents. Perhaps the 
contribution of these factors shifts over time, making an identification of 
hazardous road locations in terms of these factors less reliable than an 
identification which is not based on the contribution of a specific source to the 
variation in the expected number of accidents. 

An identical analysis was made using data for 3407 sections on Portuguese roads. 
Most of these sections were 250 metres long. The results were somewhat more 
mixed. The EB-criterion performed best for the upper 5% tail of the distribution. 
For the upper 2.5% of the distribution, the accident count criterion and the 
accident rate and number criterion tied as best performers. This suggests that a 
high recorded number of accidents in Portugal is associated with a high and stable 
accident rate, which is not always the case in Norway. For the upper 1% of the 
distribution, the accident rate was the best diagnostic criterion in Portugal – again 
suggesting that a high accident rate implies a high expected number of accidents. 

It is thus not always the case that the empirical Bayes criterion most accurately 
identifies hazardous road locations. It did, however, do so in the majority of cases 
used in this test, as well as in earlier research reported by Persaud et. al. (1999). 
There are strong arguments for relying on EB-estimates even if their diagnostic 
performance is not necessarily superior in every case to other methods that can be 
used to identify hazardous road locations statistically. The main arguments 
favouring the EB-approach are: 

1. EB-estimates permits the contributions to the expected number of 
accidents attributable to general factors, local risk factors and randomness 
to be identified statistically. 

2. By virtue of this decomposition of contributing factors, EB-estimates 
predict how large the regression-to-the-mean effect will be. If these 
predictions tend to be correct, accident analyses should allow for them. 

3. EB-estimates have known standard errors. This fact can be exploited in the 
profiles-and-peaks method used to identify longer sections of road for 
detailed engineering study (see further discussion in Chapter 4). 

Points 2 and 3 above are discussed more in detail in Chapter 4. 

2.7 A new approach to the analysis of black spots 
The approach to accident analysis for hazardous road locations proposed here 
keeps all the elements of current approaches, but adds new elements (Elvik 2006). 
It is recognised that this will make the analysis more demanding, but it will 
hopefully also make it more conclusive. 

The first stage of analysis is identical to the current practice of searching for 
patterns in accident data. It is proposed to formalise this search by relying on 
statistical tests and pattern recognition methods, as indicated by Kononov (2002). 
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Consider the data presented in Table 11 as an example. These data are fictitious, 
in order to make some of the points of the approach clearer. 

Eight accidents were recorded at a hazardous road location. Analysis shows that 
five of the eight accidents were pedestrian accidents, whereas one would normally 
expect only one in eight accidents to involve pedestrians. If the distribution of 
accidents by type is modelled as a binomial trial (each accident is either of the 
specified type or any other type), it is found that recording five pedestrian 
accidents in a total of eight accidents is a highly unlikely outcome. The normal 
probability of a pedestrian accident is 0.125 (the probability of a non-pedestrian 
accident is 0.875). The probability of observing 5 pedestrian accidents out of 8 is 
only 0.0011, given that one would expect to observe 1 pedestrian accident out of 
8. Similar tests are reported at the bottom of Table 11 for each variable recorded. 
For each variable, the probability of observing the overrepresented value of that 
variable is estimated on the basis of the outcome one would normally expect to 
find.   

On the whole, the predominant accident pattern found in table 11, pedestrian 
accidents occurring at night on a wet road surface, suggests that local risk factors 
related to the amount of pedestrian traffic, road surface friction and visual 
obstructions may be present at the location. In table 11, the number of accidents 
normally expected to occur according to all logically possible combinations of 
values for road user group (pedestrian (p = 0.125) or other (p = 0.875)), road 
surface condition (wet (p = 0.25) or dry (p = 0.75)) and presence of alcohol (yes = 
0.125, no = 0.875) has been estimated and is compared to the actual distribution 
of accidents. It is seen that the combination pedestrian, wet road and alcohol 
involved occurs much more frequently than one would expect in a random sample 
of 8 accidents (confer Table 12). 

Despite this, a more careful investigation would be needed in order to determine 
whether the factors suggested are actually responsible for the abnormally high 
number of pedestrian accidents at this particular location. Accident analysis at 
hazardous road locations amounts to proposing hypotheses based on known data, 
which means that the data that generated the hypotheses cannot also be used for 
testing them. Thus, the principal results of an analysis of accidents should be 
regarded as hypotheses only, to be tested in subsequent steps of the analysis. 
These steps can be outlined as follows: 

1. For each hazardous road location, find a safer-than-average comparison 
location, matched as closely to the hazardous road location as possible 
with respect to variables included in an accident prediction model used to 
predict the normal number of accidents. 

2. For each matched pair of sites, search for local risk factors or safety 
factors from a list of factors drawn up on the basis of the analysis of 
accidents at the hazardous road location. 

3. Blind analysts to accident records. Analysts should not know which site 
was hazardous and which site was safer than average. 

The use of this approach is shown in Table 13. Hazardous and safe sites are 
matched in pairs according to the values observed for the variables included in an 
accident prediction model. Two matched pairs are shown in table 13. Once the 
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pairs have been formed, each site is inspected and data collected regarding local 
risk factors. A sample of such data, not necessarily exhaustive, is shown in table 
12. 

In case of the first pair of sites, it was found that wet road surface friction was 
significantly worse, that there were more pedestrians crossing the road, and more 
sources of visual obstruction at the hazardous site than at the safe site. This 
information confirms the hypotheses regarding contributing factors proposed on 
the basis of the analysis of accidents. The analysis has therefore successfully 
identified local risk factors. Keep in mind that the analysts identifying risk factors 
should be blinded to accident records, to prevent their knowledge of accident 
records from biasing their observations.  

The other case shown in table 13 was less successful. It turned out that there were 
no differences between the hazardous and the safe site with respect to the risk 
factors surveyed. Hence, accidents must be attributed to other risk factors, for 
example a widespread violation of speed limits or other traffic control devices, or 
to chance fluctuations. 

Based on this logic, criteria can now be proposed regarding the conclusion to be 
drawn from an analysis of accidents and risk factors at hazardous road locations 
and matched comparison sites. These criteria are shown in Table 14. A distinction 
can be made between four cases. In the first case, factors associated with 
accidents at the hazardous road location are identified in the accident analysis, 
and the hypotheses regarding contributing risk factors are supported, meaning that 
these risk factors are found to be more clearly present (assume less favourable 
values) at the hazardous road location that at the matched comparison site. In this 
case, it is reasonable to conclude that the hazardous road location is a true 
positive, i.e. a site that has a higher expected number of accidents than similar 
sites, due to local risk factors. 
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In the second case, the accident analysis identified a clear pattern, suggesting that 
specific risk factors contributed to the accidents, but the subsequent matched-pair 
analysis of these risk factors does not support these hypotheses. In this case, the 
analysis is inconclusive. The accidents may be more closely associated with other 
risk factors than those examined, but they may also be the result of random 
fluctuations mainly. In a case like this, it is tempting to carry on the analysis by 
examining one risk factor after the other, until one or more factors are found to be 
associated with accidents. This practice should be discouraged. It amounts to data 
mining, which, if carried out long enough, will always turn up something that 
looks systematic. Surely, among the hundreds of risk factors that contribute to 
accidents, one of them may by chance seem to be associated with the accidents 
recorded at a particular location. It is precisely to guard against this sort of data 
mining that the examination of risk factors should be limited to a specific set of 
risk factors that have been identified in the accident analysis as potentially 
contributing to the specific pattern of accidents observed at a site. 

In the third case, the first stage of analysis is “unsuccessful”, in the sense that no 
clear pattern is found and no hypotheses regarding specific risk factors 
contributing to the accidents can be proposed. The site could, as pointed out by 
Harwood et al (2002), nevertheless be a true black spot. However, for it to be so, 
the accidents would have to be mainly associated with fairly general risk factors, 
i.e. risk factors that are more or less associated with all accidents, and that do not 
necessarily result in the predominance of a particular type of accident. Risk 
factors that may contribute to any type of accident include speed, road surface 
friction, lateral placement of vehicles and the following distances of vehicles. 
These risk factors are always present, but they could form an unfortunate 
combination at a particular location. To test if this is the case, one could compare 
observed values for the general risk factors at a hazardous road location to a 
matched comparison site. If the values observed were, in general, less favourable 
at the hazardous road location than at the comparison site (higher speed, less 
friction, lateral placement giving a smaller safety margin to either the edge of the 
road or the median, shorter following distances), it would seem reasonable to 
conclude that the site is a true black spot. 

The fourth case is identical to the third, except that no evidence is found 
indicating that the general risk factors are contributing to the accidents at the 
hazardous road location. In this case, it is reasonable to conclude that the site is a 
false positive, since there is no discernible pattern in accidents, and since no risk 
factors can be found to be associated with the accidents. 
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2.8 Ranking of black spots and selection of treatments 
Various methods have been proposed for ranking black spots for analysis and 
selection for treatment. The simplest is perhaps to rank sites identified as 
hazardous by the recorded number of accidents. However, what we are looking 
for are ways to reduce the accidents: it is not obvious that a more cost-effective 
treatment can be found at a site has recorded 10 accidents than at a site that has 
recorded 7 accidents. 

Hauer et al (2004) discuss how best to rank hazardous road locations, which they 
refer to as sites with promise. They propose that the best ranking is one that 
assigns high rank to sites that can be treated cost-effectively, lower rank to sites 
that need more expensive treatments. Hence, ranking needs to incorporate 
information on the expected cost of treatments. Such information can usually only 
be obtained from a detailed engineering study, which is normally not performed 
until after sites have been ranked. Indeed, one of the purposes of ranking is to 
select those sites for which a more careful study is to be made in order to identify 
effective treatments. The task would therefore seem impossible: to rank sites 
according to the expected cost-effectiveness of treatment, one needs information 
that is normally not available until after a detailed engineering study has been 
performed, and no such study will be performed until sites have been ranked. 

To get around this problem, Hauer et al (2004) first ranked sites by five different 
criteria. They then performed a detailed engineering study for 22 sites that were 
ranked high according to two of these five criteria: (1) The expected number of 
accidents (EB-estimate), (2) The expected number of severity-weighted accidents 
(EB-estimate). Once the detailed engineering study had been performed and 
estimates of the costs of treatment obtained for each sites, ranking by benefit-cost 
ratio was then compared to the original ranking. Sites were plotted in a diagram 
with cumulative costs of treatment on the abscissa and cumulative safety benefit 
(in monetary terms) on the ordinate. The various ranking criteria could then be 
compared in terms of how successfully they identified sites where the most cost-
effective treatments could be introduced. It was concluded that the total expected 
number of accidents or the cost-weighted total expected number of accidents were 
best ranking criteria. In a sense, this confirms the finding reported above, that the 
EB-estimate of the number of accidents provides the best basis for identifying 
hazardous road locations. 

Hauer et al (2004) rejected ranking hazardous road locations by the excess of their 
expected number of accidents above a reference level, a criterion analogous to the 
EB dispersion criterion discussed above. They argue that effective treatments are 
likely to reduce all accidents, not just those that represent an excessive number 
compared to what is normal for similar sites. This argument has clear merit as far 
as treatments affecting all accidents are concerned, like lowering speed limits. It 
is, however, less obvious that it is equally valid when treatments are directed at 
specific types of accidents. Thus, guard rails may prevent vehicles from going off 
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the road in a curve which is afflicted by this problem, but may not prevent rear-
end collisions due to limited sight distance in the same curve. 

An alternative ranking criterion is used in Norway (Statens vegvesen 2006). Any 
site that has recorded 4 or more accidents in 5 years is identified as a black spot. 
For each site, the annual cost of accidents is estimated, relying on the recorded 
number of accidents, but using mean cost rates for the various types of accident. 
Then, the normal annual cost of accidents for a similar site is estimated. A similar 
site is defined as a site of the same basic type (e.g. three leg junction) and having 
the same traffic volume as the black spot. The cost of accidents at the black spot 
are then compared to the normal cost of accidents at similar locations. The 
difference is taken and sites are ranked for detailed engineering analysis by the 
“excess” cost of accidents. 

To account for the fact that treatments may not just influence the excessive 
number of accidents, but actually also reduce the normal number of accidents, the 
normal number of accidents and the costs associated with these accidents is 
multiplied by 0.8, implying that a 20% improvement of the normal level of safety 
is possible in addition to eliminating the excessive costs associated with an 
abnormally high number of accidents. 

The attraction of this method for ranking sites for more detailed study is that it 
provides a benchmark for the maximum costs of treatment that can reasonably be 
incurred without making a project ineffective from an economic point of view (i.e. 
giving benefits smaller than costs). A possible weakness of the method is that it 
may not adjust sufficiently for regression-to-the-mean, by relying on the recorded 
number of accidents at black spots. On the other hand, it employs the average cost 
of accidents, thus avoiding the enormous inflation of cost estimates that would 
result if a fatal accident has been recorded at a black spot. It would, to a major 
extent, be the result of chance whether any of the accidents recorded at a black 
spot was a fatal accident. 

2.9 Evaluation of the effectiveness of black spot treatment 
Systematic evaluation of the effectiveness of black spot treatment is essential. For 
too long, the complexity of this task has been underestimated by researchers. As a 
result, a number of methodologically flawed evaluations have been made. A 
critical review of these evaluation studies is given by Elvik (1997). Some main 
points of his study will be presented. 

Studies were classified according to whether or not they controlled for the 
following potentially confounding factors in before-and-after studies of black spot 
treatment: 

1. Regression-to-the-mean 

2. Changes in traffic volume 

3. Long-term trends in the number of accidents 
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4. Accident migration, that is the tendency for accidents to “migrate” from 
treated black spots to other locations. 

The classification was generous: studies that claimed to have controlled for any of 
the confounding factors were treated as having done so, although some studies did 
not explain in sufficient detail how they had controlled for the confounding 
factors. 

 
Figure 5: The importance of confounding factors in before-and-after studies of black spot 
treatment. Source: Elvik 1997 

Figure 5 gives a sample of the results of the study. It shows the percentage change 
in the number of injury accidents attributed to black spot treatment, depending on 
which confounding factors studies controlled for. 

In simple before-and-after studies that did not control for any of the four 
confounding factors, an impressive accident reduction of 55% was attributed to 
black spot treatment. In studies that controlled for regression-to-the-mean, long-
term trends and accident migration, the effect attributed to black spot treatment 
was zero. There is a clear tendency in support of the Iron Law of Evaluation 
Studies: The more confounding factors a study controlled for, the smaller the 
effects attributed to black spot treatment. 

Now, some people might wonder how we can know that a potentially 
confounding factor, say long-term trends, actually did confound a study. The 
answer is simple. If the effect attributed to the road safety measure differs 
depending on whether or not the potentially confounding factor is controlled for, 
then it does in fact confound study results. Potentially confounding factors do not, 
of course, always actually confound the results of a study. If there are no long-
term trends in accidents, then this factor cannot confound. The point is that we 
cannot know whether or not a potentially confounding factor actually confounds a 
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study unless we control for it. The fact that a certain factor is potentially 
confounding is, in other words, a sufficient condition for trying to control for it. 

Only an experimental study design in which units are assigned randomly to a 
treated and untreated group makes sure all potentially confounding factors are 
controlled for. In non-experimental studies, the best we can do is to control for the 
confounding factors that are known at any time, and for which relevant data can 
be obtained. 

Let us return for a moment to Figure 5. It has been claimed that: “considerable 
safety benefits may accrue from application of appropriate road engineering or 
traffic management measures at hazardous road locations. Results from such 
applications at “black spots” demonstrating high returns from relatively low cost 
measures have been reported worldwide.” (quoted from Elvik 1997). Is this claim 
justified? Take a careful look at Figure 5 and judge for yourself. The pattern 
shown in Figure 5 would seem to support a rather harsh verdict: The claim that 
black spot treatment is an effective way of preventing road accidents is totally 
unsubstantiated. It is based on an uncritical acceptance of studies that must be 
rejected because they did not control for important, and well known, confounding 
factors. 

Today, the Empirical Bayes method is widely regarded as the “gold standard” for 
observational before-and-after studies of road safety measures. It should be 
recognised, however, that application of this method is not always straightforward 
and that if it is inappropriately applied, it can produce misleading results (Persaud and 
Lyon 2007). The fictitious data presented in Table 4 can be used to develop a simple 
example of the use of the Empirical Bayes method in a before-and-after study. 

Suppose sites that recorded 4 or more accidents are regarded as black spots. There 
are 66 such locations. Further, suppose that 35 are selected for treatment, 31 are 
not. The 35 sites selected for treatment includes all 28 correct positives and 7 of 
the false positives. This assumption is reasonable, as even state-of-the-art 
techniques for accident analysis cannot guarantee that only correct positives are 
selected for treatment. 

Sites selected for treatment had a total of 183 accidents before treatment, of which 
148 at the correct positives and 35 at the false positives. The remaining false 
positives, not selected for treatment, had 151 accidents. In this data set, 
regression-to-the-mean is known (since accidents are assumed to be Poisson-
distributed around the various mean values). The true long-term-expected number 
of accidents, after controlling for regression-to-the-mean, can be calculated to 112 
for the correct positives (recorded 148), 21 for the false positives (recorded 35) 
and 90 for the false positives not selected for treatment (recorded 151). 

It will be assumed that treatment is only effective for the correct positives, 
reducing their expected number of accidents by 25% (from 112 to 84). No effect 
is assumed for the false positives selected for treatment, nor for the other false 
positives. 
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Table 15 summarises the findings expected by various techniques for before-and-
after studies. 

 
Table 15: Results of hypothetical before-and-after study using various techniques 

 
Technique 

Recorded 
before 

Expected 
after 

Recorded 
after 

Estimate of 
effect 

Simple before-and-after 183 183 105 -43% 

Before-and-after, non-treated as comparison 183 109 105 -4% 

Empirical Bayes before-and-after 183 122 105 -14% 

True situation 183 133 105 -21% 
Kilde: TØI report 883/2007 

 

The true situation, as determined from the hypothetical data, is a decline from a 
long-term expected number of accidents of 133 to 105, an accident reduction of 
21%. If a simple before-and-after study is made, not controlling for regression-to-
the-mean, the effect of the treatment will be considerably overstated (estimated to 
43% versus the correct value of 21%). If the non-treated black spots are used as 
comparison group, the effect of the treatment will be underestimated. The ratio of 
after to before accidents in the comparison group (90/151) is used as a “control 
ratio” and multiplied by the recorded number of accidents before in the treated 
group (183), yielding an expected number of accidents of 109. This will over-
adjust for regression-to-the-mean, as a stronger regression-to-the-mean effect is 
expected for the non-treated sites than for the treated sites. 

The Empirical Bayes technique was implemented by predicting the expected 
number of accidents according to the following expression: 

X XE( x) X 1 X
Var(X) Var(X)

⎡ ⎤⎛ ⎞ ⎛ ⎞
λ = ⋅ + − ⋅⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
  (8) 

This is the EB-estimate of the expected number of accidents applied to a 
population of sites for which no accident prediction model has been estimated 
(Hauer 1986). X is the mean number of accidents in a population of sites, Var(X) 
is the variance. Using the hypothetical data in Table 5, the mean is 0.779 and the 
variance is 2.003. The EB-estimate thus becomes. 

[(0.779/2.003) · 0.779] + [(1 – (0.779/2.003)) · X] 

In which X denotes the recorded number of accidents in the before-period. As can 
be seen from Table 15, the EB-method does slightly underestimate the true effect 
of the treatment, but it comes closer than any of the other techniques. 

The source of the error in this case is that the EB-prediction is based on a 
considerably more heterogeneous population of sites than those that are 
considered for black spot treatment. This mean that the variance exceeds the mean 
and that the slope parameter of the EB-predictions (the expression within the first 
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brackets above) becomes too low. This, in turn, underlines the importance of 
basing EB-predictions on a reference group that is as similar to the treated group 
as possible (Persaud and Lyon 2007). The use of accident prediction models as 
part of the EB-method may help in this regard. 

2.10 Key elements of state-of-the-art black spot 
management 
The key elements of a state-of-the-art approach to black spot management can be 
summarised as follows: 

1. Road accident black spots should be identified by reference to a 
population of roadway elements for which the normal level of safety can 
be estimated. Examples of populations of roadway elements include: 
sections of a specified length, curves with radius within a certain range, 
bridges, tunnels, three-leg junctions, four-leg junctions, etc. It should in 
principle be possible to enumerate all elements of each population. 

2. Road accident black spots should be identified in terms of the expected 
number of accidents, i.e. black spots are sites that have a higher expected 
number of accidents than the normal expected number for members of the 
population to which they belong. Ideally speaking, a black spot should 
have a higher expected number of accidents than other similar locations 
due to specifically local risk factors. In practice, however, precise 
estimation of the contribution of local risk factors to accidents at black 
spots may not be possible. 

3. The above points imply that black spots cannot be reliably identified in 
terms of a critical count of accidents. For the purposes of accident 
analysis, it is nevertheless wise to identify only sites that have a certain 
minimum number of accidents as black spots. The diagnostic performance 
of alternative critical values for the count of accidents should be tested 
and, if possible, the optimal value selected. 

4. Inclusion of accident severity in the identification of black spots is best 
made by means of a preliminary analysis of accidents at black spots. For 
black spots with a given expected number of accidents, the cost of the 
accidents should be estimated, preferably by relying on a model that 
allows estimation of the expected number of accidents at each level of 
severity. In case such a model is not be applicable, the cost of accidents 
should be estimated on the basis of the recorded number of accidents. Sites 
that have a high mean cost per accident should be ranked high on a list for 
more detailed engineering analysis. 

5. Detailed engineering analysis of black spots has two purposes: (1) To 
identify the true and false black spots and eliminate false black spots from 
further consideration. (2) To propose safety treatments for the true black 
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spots. Accident analysis should be performed in two stages. The first stage 
is, by means of detailed examination of accidents, to suggest hypotheses 
regarding risk factors that may have contributed to the accidents. The 
second stage is to test the hypotheses developed in the first stage of 
analysis. This can be done by means of a double blind comparison of the 
incidence of risk factors at each black spot and a comparison location with 
a good safety record. 

6. Treatments proposed for black spots should always be evaluated using 
state-of-the-art techniques. The Empirical Bayes method represents the 
current state of the art for before-and-after studies of road safety 
treatments. It controls for (a) Local changes in traffic volume, (b) Long 
term trends in accidents, and (c) Regression-to-the-mean. If accident 
migration is an issue, an attempt to control for it should be made. Failure 
to control for all known confounding factors may result in grossly 
erroneous estimates of the effects of black spot treatment. 

 

 



State-of-the-art approaches to road accident black spot management and safety analysis of road networks 

Copyright © Transportøkonomisk institutt, 2007 49 
Denne publikasjonen er vernet i henhold til Åndsverkloven av 1961  

3 Accident prediction models: a 
methodological review 

Accident prediction models are an important element of state-of-the-art 
techniques both for black spot management and safety analysis of road networks. 
In view of this fact, it is important to develop good accident prediction models. 
This chapter discusses some difficulties that may arise in developing accident 
prediction models and provides some guidelines for evaluating accident prediction 
models from a methodological point of view. The following topics will be 
discussed: 

1. Specification of a model 

2. Choice of explanatory variables for inclusion in accident prediction 
models 

3. Dual-state models 

4. Multi-level models 

5. Specification of functional relationships 

6. Specification of residual terms 

7. Evaluation of goodness of fit 

8. The treatment of time 

9. Controlling for endogeneity 

10. Causal interpretation of relationships found 

11. Assessing the predictive performance of a model 

12. Application of model estimates in the empirical Bayes approach to road 
safety estimation 

13. Assessing potential sources of error in predictive models 

Each of the topics will be dealt with rather briefly. References are given to more 
extensive treatments. 

A note on terminology is perhaps needed to clarify some key terms used in the 
discussion. The term accident prediction model usually denotes a multivariate 
model fitted to accident data in order to estimate the statistical relationship 
between the number of accidents and factors that are believed to be (causally) 
related to accident occurrence. The term “predictive” is somewhat misleading; 
“explanatory” would be a better term. Prediction refers to attempts to forecast 
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events that have not yet occurred, whereas accident prediction models are always 
fitted to historical data and can thus only describe, and perhaps explain, past 
events. The issue is not merely terminological; an example will be given of a 
model that almost perfectly reproduced the data it was fitted to, yet turned out to 
give badly wrong predictions for future years (Partyka 1991). 

Terms that are used less frequently, but in the same sense as the term predictive 
model, include multivariate model, explanatory model or structural road accident 
model (Gaudry and Lassarre 2000). 

3.1 Model specification 
Logically speaking, the first decision made in developing an accident prediction 
model is the specification of the model. Model specification refers to the general 
formulation of a model in terms of the following characteristics: 

1. Choice and definition of dependent variables. 

2. Choice and definition of independent variables. 

3. Specification of the functional form of the relationship between 
independent and dependent variables. 

4. Specification of the residual terms of the model. 

5. The treatment of time in a model. 

For each of these items, a choice must be made between different alternatives. 
With respect to the dependent variable, the options include: 

1. Using the number of accidents as the dependent variable. 

2. Using the number of killed or injured road users as dependent variable(s). 

3. Using an accident rate or injury rate as dependent variable. 

The most commonly used dependent variable in accident prediction models is the 
number of accidents. If the number of injured road users is used as dependent 
variable, there may be problems of dependency between observations. Thus, if a 
road user was fatally injured in an accident, it is more likely that other road users 
involved in the same accident were also fatally or seriously injured. The use of 
multi-level models (to be discussed below) may be a way of dealing with this 
problem. Another option is to develop separate models for each level of injury 
severity. 

Accident or injury rates (per million vehicle kilometres of travel) are rarely used 
as dependent variable in accident prediction models today. It has been recognised 
that the relationship between traffic volume and the number of accidents or 
injuries tends to be non-linear. Hence the use of a rate as a dependent variable is 
inappropriate, since it implies a linear relationship. 

Points 2-5 on the list above are discussed in subsequent sections. 
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3.2 Choice of explanatory variables 
The expected number of accidents has traditionally been modelled as the product 
of exposure and accident rate: 

Expected number of accidents (λ) = Exposure (N) ⋅ Accident rate (p) (9) 
 

Accident rate is traditionally defined as the (recorded) number of accidents per 
unit of exposure: 

Accident rate = 
exposure ofUnit 

accidents ofNumber    (10) 

It is usually the recorded number of accidents that is used in the numerator when 
estimating the accident rate. This is equivalent to assuming that the recorded 
number of accidents is an unbiased estimate of the expected number of accidents, 
which is not always true. Exposure can be conceived of as the number of trials in 
a binomial experiment, and a commonly used unit of exposure is one kilometre of 
travel (Hakkert and Braimaister 2002). The idea, deeply rooted in probability 
theory, that the expected number of accidents depends on exposure and accident 
rate, is perhaps the source of the assumption traditionally made in road safety 
research that one can account for the effects of traffic volume on accidents by 
using accident rates. However, as will be discussed in the next section, this 
assumption is no longer tenable. 

Based on this framework, the explanatory variables that are potentially relevant in 
accident prediction models can be placed in two main categories: (1) Variables 
describing exposure to accident risk, and (2) Risk factors that influence the 
number of accidents expected to occur per unit of exposure. Exposure has 
traditionally been treated as a unitary concept; in fact it is multidimensional. One 
may, for example, decompose exposure in terms of groups of road users or in 
terms of movements passing through an intersection. As will become clear, 
inadequate decomposition of exposure, or incomplete data on exposure, is a major 
weakness of current accident prediction models. Risk factors influencing accident 
occurrence, or the outcome of accidents, have long been recognised as very 
numerous and diverse. 

Ideally speaking, the choice of explanatory variables to be included in an accident 
prediction model ought to be based on theory (Fridstrøm et al 1995). A theoretical 
basis for choosing explanatory variables might take the form of, for example, a 
causal model (Asher 1976), or path diagram, specifying the relevant variables and 
their paths of influence. In practice, a theoretical basis for identifying explanatory 
variables is rarely stated explicitly (Hauer 2004). The usual basis for choosing 
explanatory variables appears to be simply data availability. It is obvious that any 
analysis will be constrained by data availability. Nevertheless, the choice of 
explanatory variables should ideally speaking not be based on data availability 
exclusively. Explanatory variables should include variables that: 
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1. Have been found in previous studies to exert a major influence on the 
number of accidents, 

2. Can be measured in a valid and reliable way, 

3. Are not endogeneous, that is dependent on other explanatory variables 
included or on the dependent variable in the model. 

In some cases, explanatory variables are entered stepwise into the model and 
included only if their relationship to the dependent variable is statistically 
significant. This procedure ensures that a parsimonious model is developed, i.e. a 
model that contains as few explanatory variables as possible. One should, 
however, not rely on statistical significance to decide whether or not a variable 
should be included. This may produce biased results.  

Explanatory variables commonly included in accident prediction models fitted to 
data referring to roadway elements include: 

• An indicator of exposure, often an estimate of vehicle kilometres of travel 
(usually including motor vehicles only) 

• Variables describing the transport function of the road (motorway, main 
arterial, collector road, access road) 

• Variables describing cross section (number of lanes, lane width, shoulder 
width, presence of a median, median width, etc) 

• Variables describing traffic control (speed limit, type of traffic control at 
intersections) 

Variables that are less often included in accident prediction models referring to 
roadway elements include: 

• Variables describing alignment (horizontal and vertical curvature) 

• Estimates of pedestrian and cyclist exposure 

• Variables describing road user behaviour (speed, use of protective devices, 
etc) 

Errors that may be caused by the omission of these variables, in particular 
incomplete exposure data are discussed in a later section. 

3.3 Choice of model form 
The basic form of nearly all modern accident prediction models is this (see e.g. 
Mountain et al 1996, Fridstrøm 1999, Gaudry and Lassarre 2000, Ragnøy, 
Christensen and Elvik 2002, Greibe 2003): 

 

E(λ) = e xQ ii∑γβα    (11) 
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The estimated expected number of accidents, E(λ), is a function of traffic volume, 
Q, and a set of risk factors, Xi (i = 1, 2, 3, … n). The effect of traffic volume on 
accidents is modelled in terms of an elasticity, that is a power, β, to which traffic 
volume is raised (Hauer 1995). This elasticity shows the percentage change of the 
expected number of accidents, which is associated with a 1 percent change in 
traffic volume. If the value of β is 1.0, the number of accidents is proportional to 
traffic volume, as traditionally assumed when using accident rates in road safety 
analysis. If the value of β is less than 1, the number of accidents increases by a 
smaller percentage than traffic volume. If the value of β is greater than 1, the 
number of accidents increases by a greater percentage than traffic volume. See 
e.g. Ivan (2004) for a discussion. 

If road sections of varying lengths are used, an additional term may be added to 
the predictive equation  to represent the effect of varying length of road segments. 

The effects of various risk factors that influence the probability of accidents, 
given exposure, is generally modelled as an exponential function, that is as e (the 
base of natural logarithms) raised to a sum of the product of coefficients, γi, and 
values of the variables, xi, denoting risk factors. Mathematically speaking, the 
following functions are identical: 

 

eQ Q ββ ⋅= )ln(     (12) 

 

This means that the common model form presented in equation 4 can be 
simplified to 

 
coefficients×variablesE( ) e∑λ =    (13) 

 

This is in turn equivalent to a log-linear model: 

 

Ln(E(λ)) = α + β · ln(Q) + γi · Xi   (14) 

 

In models that refer to intersections, a fairly common model form is the following 
(see e.g. Brüde and Larsson 1993, Turner and Nicholson 1998, Miaou and Lord 
2003, Persaud et al 2003): 

 

E(λ) = eQQ x
MIMA

ii∑γββα    (15) 
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In this model, Qma refers to the number of vehicles entering an intersection from 
the major road, Qmi refers to the number of vehicles entering an intersection from 
the minor road. Several versions of these basic model forms have been developed; 
see the papers of Turner and Nicholson (1998), Miaou and Lord (2003) and Oh, 
Washington and Choi (2004) for examples of alternative models. 

There are few guidelines for the choice of model form. The choice of an 
exponential form is logical in view of the characteristics of the Poisson 
distribution. More generally, since E(λ) cannot be zero or negative, multiplicative 
models are the only ones that are admissible. A multiplicative model does not 
need to be Poisson, however. Additive, linear models are rarely used today, as 
these models can give illogical results, like a negative predicted number of 
accidents. Interaction terms are not very common in accident prediction models, 
although one can easily imagine that, for example, a sudden change in both 
alignment and cross section may have a greater effect on accidents than the sum 
of the effects of changes in each of these design elements. Hauer (2004) offers 
some preliminary guidelines, arguing that accident prediction models should 
contain both a multiplicative and an additive portion: 

Y = scale parameter × [(segment length for prediction) × (multiplicative portion) 
+ (additive portion)] 

The multiplicative part is intended to represent the effects of traffic volume and 
continuous hazards. The additive part is intended to represent the effects of point 
hazards, like driveways. Hauer, Council and Mohammedshah (2004) present an 
example of a model of this form. The choice of model form is closely related to 
the specification of functional relationships, discussed below. 

3.4 Dual-state models 
Accident prediction models differ in terms not just of the variables included, but 
also with respect to the assumptions made regarding the accident generating 
process. It is important to stress the fact that the accident generating process 
cannot be observed directly; only its outcome can be observed. The most common 
form of model is based on the assumption that accidents occur at a constant rate 
per unit of time in a given period. This rate will vary from place to place, and may 
vary from period to period. Models based on this assumption are referred to as 
single-state models. 

Recently, an alternative family of models, usually referred to as zero-inflated 
Poisson or zero-inflated negative binomial models have been proposed (Shankar, 
Milton and Mannering 1997) and applied in some analyses (e.g. Lee and 
Mannering 2002). These models are based on the assumption that there are two 
modalities, or two states, for the accident generating process: a normal state, 
corresponding to the usual assumption of a constant expected number of accidents 
per unit of time, and a safe state, in which accidents will not occur. The resulting 
empirical probability distribution for the number of accidents will be a mixture of 
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a standard compound Poisson distribution (like the negative binomial distribution) 
and a distribution containing zero outcomes (i.e. no accidents recorded) only. The 
empirical distribution will then contain an excessive number of zeros compared to 
the standard negative binomial distribution. 

The use of zero-inflated models has generated controversy. In a recent paper 
Lord, Washington and Ivan (2005) argue that the empirical basis of zero-inflated 
models is questionable. They show by means of simulation that an excess number 
of zeros can arise as a result of using small units in time and space for analysis 
(e.g. one year of accident data for 0.5 km sections, rather than, say, four years of 
accident data for 1 km sections) and when some of the units have very low 
exposure (an AADT of, say, less than 500) combined with a high accident rate. 
Neither of these sources of excess zeros can be attributed to a true dual-state 
process, in which one of the states is perfectly safe. Lord et al (2005) argue that 
the use of zero-inflated models represents a misplaced emphasis on finding 
models that fit the data perfectly, rather than models that make sense from a 
theoretical point of view. 

A more plausible form of dual-state models, not represented in modern accident 
prediction models, was proposed more than forty years ago by Cresswell and 
Froggatt (1963). According to these models, accidents occur at a constant rate 
most of the time. There are, however, occasional “spells” in which the risk of 
accidents is temporarily increased. Cases of such spells, applied to road sections 
or intersections, include rainfall, unusually cold weather, or holiday seasons 
associated with increased travel. Other dual-state models have been described by, 
e.g. Lemaire (1995). 

3.5 Multi-level models 
Road accident data represent observations at three levels (Lenguerrand, Martin 
and Laumon 2006): 

1. The accident level 

2. The vehicle level 

3. The road user level 

In most accidents, more than one vehicle or road user is involved. This means that 
a hierarchical model should be applied to account for the fact that data at the 
accident level and vehicle level may vary less than data at the road user level. To 
see how this may occur, consider the hypothetical data given in Table 16. 
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Table 16: Hypothetical data to show the hierarchical nature of road accident data 

Accident level Vehicle level Road user level 

Head-on accident Car 1 Male, 19 years, seat belt not worn, killed 

Head-on accident Car 1 Female, 18 years, seat belt worn, seriously injured 

Head-on accident Car 1 Female, 17 years, seat belt worn, slightly injured 

Head-on accident Car 2 Male, 38 years, seat belt worn, serious injured 

Head-on accident Car 2 Female, 34 years, seat belt worn, slightly injured 

Head-on accident Car 2 Child, 3 years, in child restraint, uninjured 
Kilde: TØI report 883/2007 

 

As can be seen, the data referring to road users vary from road user to road user 
with respect to at least three of the four variables included (age, gender, wearing 
of seat belts or child restraints and injury severity). However, data referring to 
vehicles involved vary only once, and accident data do not vary at all, since all six 
road users were involved in the same head-on accident. This means that the 
effects of the type of accident (head-on, rear-end, etc) on, for example, injury 
severity cannot be properly assessed unless the hierarchical nature of the data is 
appropriately modelled. The fact that all road users were involved in the same 
accident, and that some of the road users were occupants of the same vehicle 
means that the data referring to road users are correlated: the fact that one road 
user was seriously injured increases the probability that another road user was 
also seriously injured. Again, unless this is modelled correctly, the confidence 
intervals for the effects attributed to the higher level variables (i.e. the vehicle- 
and accident level variables) will become too small. Lenguerrand et al (2006) thus 
conclude: “Using the LM (logistic regression model assuming independent data) 
is theoretically false but in practice departures from the more appropriate and 
more complex models are minor.” 

Most accident prediction models use counts of accidents as the dependent 
variable. Except for data sets that include a significant number of secondary 
accidents (i.e. accidents that were caused primarily by another accident, for 
example, by way of road users becoming so distracted by an accident as to 
become involved in another accident), one may assume that accident data are 
statistically independent, in the sense that the occurrence of one accident does not 
influence the likelihood of another accident. 

In a Norwegian model (Ragnøy, Christensen and Elvik 2002), the problem of 
correlations between levels of injury severity was circumvented by developing 
separate models for each level of injury severity. 

3.6 Specification of functional relationships 
Specification of functional relationships refers to the mathematical form of 
functions relating the number of accidents to one or more explanatory variables. 
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In the standard formulation of accident prediction models, a power function is 
applied to describe the effects of exposure, and an exponential function applied to 
describe the effects of risk factors. These functional relationships can both take on 
many shapes, including all those shown in Figure 6. 

 

 
Kilde: TØI report 883/2007 

Figure 6: Functional forms consistent with a power model or an exponential model 

 

These functional forms share one basic limitation. All the functions are 
monotonous throughout their range. This means that they do not permit “turning 
points”, or local maxima or minima. More flexible functional forms can be fitted 
by applying Box-Cox transformations (Gaudry and Lassarre 2000) or by fitting 
polynomial functions by means of spline smoothing techniques (Miaou and Lord 
2003). Hauer and Bamfo (1997) present an algorithm that can be used to explore 
the form of the function that best links an explanatory variable to a dependent 
variable. Thus, the development during the last ten years of powerful numerical 
algorithms that can be implemented on desktop computers means that virtually 
any imaginable functional form can be fitted to accident data. The challenge is 
therefore no longer to develop a model that may give an almost perfect fit to the 
data. 

The requirement that a model be linear only means that it should be linear in 
parameters, not necessarily in functional form. There is nothing that prevents a 
linear model from providing non-monotonous effect curves. It is just a matter of 
including an appropriate set of variable transformations. In most cases, however, 
monotonicity is a sensible constraint to impose. 

Examples of complex functional forms (Hauer et al 2004): 
 
( )
{ }

3.991 3.991/30speed limit e
50,000 150 2,000

−

∪ ∪
   (16) 

 
0.171D 0.057De−⎡ ⎤+⎣ ⎦    (17) 

 
The first of these functions relates accidents to speed limit. The values listed in 
the denominator represent different types of road; in applying the function, one of 
these values (either 50,000, 150 or 2,000) is chosen. The second function relates 
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accidents to the degree of curve, a concept used in highway design in North 
America. A plot of the function shown in equation 12 is shown in Figure 7 (the 
function shown in equation 12 applies to PDO-accidents; similar functions were 
fitted for injury accidents and all accidents). 

 
Figure 7: An example of a complex functional relationship. Source: Hauer, Council and 
Mohammedshah, 2004 

3.7 Specification of residual terms 
Observed variation in the number of accidents is nearly always a mixture of 
systematic and random variation. It is only the systematic part of the variation that 
can be explained by means of accident prediction models. A perfect model 
explains all systematic variation in accident counts. When estimating an accident 
prediction model, it is important to specify the distribution of the residual terms 
correctly. The residual term of a model is the part of systematic variation in 
accident counts, plus random variation, which is not explained by the model. If a 
model explains all the systematic variation in accident counts there is in a data set, 
the residuals will by definition contain random variation only and can be specified 
as Poisson distributed. Usually, however, a model will not be able to explain all 
systematic variation in accident counts. The residuals will then contain some 
over-dispersion, which can usually be adequately described by the negative 
binomial distribution. 

As noted above, a number of probability distributions have been fitted to accident 
data. The Poisson and negative binomial are the most commonly used 
distributions; other distributions include zero-inflated Poisson or zero-inflated 
negative binomial (Shankar, Milton and Mannering 1997), dual-state Poisson (not 
zero-inflated), Poisson inverse Gaussian (Lemaire 1995), condensed negative 
binomial, (Morrison and Schmittlein 1981), the long distribution and the short 
distribution (Cresswell and Froggatt 1963). In principle, all these distributions 
may describe both the distribution of accidents in a population at risk and the 
distribution of the residual terms of an accident prediction model. For further 
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discussion, see Fridstrøm et al (1995), Turner and Nicholson (1998), Hauer 
(2001), Miaou and Lord (2003) and Elvik (2004). 

3.8 Evaluation of goodness of fit 
Several measures have been proposed to evaluate the goodness of fit of accident 
prediction models. Miaou (1996) shows that the squared multiple correlation 
coefficient is not suited as a measure of the goodness of fit of an accident 
prediction model. Maher and Summersgill (1996) discuss the use of the scaled 
deviance and the log-likelihood ratio as measures of goodness-of-fit, concluding 
that the scaled deviance is not suited for data sets that have a low mean number of 
accidents. Fridstrøm et al (1995) discuss and compare five measures of goodness-
of-fit. One of these, termed the Elvik index, is derived from the over-dispersion 
parameter of negative binomial accident prediction models and will be discussed 
in more detail, because it is computationally simple and has a number of the 
desirable characteristics for a measure of goodness-of-fit listed by Miaou (1996). 

Recall that the total variation in the count of accidents found in a sample of study 
units can be decomposed into random variation and systematic variation (Hauer 
1997): 

Total variation = Random variation + Systematic variation (18) 
 
There is systematic variation in number of accidents whenever the variance 
exceeds the mean. This is referred to as over-dispersion. The amount of over-
dispersion found in a data set, can be described in terms of the over-dispersion 
parameter, μ, which is defined as follows: 
 
Var(x) = λ ⋅ (1 + μλ)   (19) 
 
Solving this with respect to the over-dispersion parameter (µ) gives: 
 

μ = 
λ

λ
1)(

−
xVar

    (20) 

 
The success of a model in explaining accidents can be evaluated by comparing the 
over-dispersion parameter of a fitted model to the over-dispersion parameter in 
the original data set. Table 17 presents a data set for national highways in 
Norway, showing the number of fatalities per kilometre of road during 1993-2000 
(Ragnøy, Christensen and Elvik 2002). The mean number of road accident 
fatalities per kilometre of road was 0.0646; variance was 0.0976. The over-
dispersion parameter can be estimated to 7.91. A multivariate accident model was 
fitted to the data, assuming a negative binomial distribution for the residuals. The 
coefficients estimated for this model are listed in table 17. The over-dispersion 
parameter for the model was 2.39. Inserting this into equation 9 gives an 
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estimated variance of 0.0745. The contributions of various factors to the observed 
variance in accident counts can be determined as follows: 

Random variation = 0.0646/0.0976 = 0.662 = 66.2% of all variance 

Systematic variation = (0.0976 – 0.0646)/0.0976 = 0.338 = 33.8% 

Systematic variation explained by model = (0.0976 – 0.0745)/0.0976 = 0.237 = 
23.7% 

Systematic variation not explained by model = (0.0745 – 0.0646)/0.0976 = 0.101 
= 10.1% 

The model explains 0.237/0.338 = 0.701 = 70.1% of all systematic variation 
found in this data set. 

Most models assume a constant over-dispersion parameter. If, however, the “size” 
of the units of analysis differs (road sections with different lengths, for example), 
it is more correct to treat the over-dispersion parameter as a variable (Hauer 2001) 
and model it as a function of, for example, section length. 



St
at

e-
of

-th
e-

ar
t a

pp
ro

ac
he

s t
o 

ro
ad

 a
cc

id
en

t b
la

ck
 sp

ot
 m

an
ag

em
en

t a
nd

 sa
fe

ty
 a

na
ly

si
s o

f r
oa

d 
ne

tw
or

ks
 

C
op

yr
ig

ht
 ©

 T
ra

ns
po

rtø
ko

no
m

is
k 

in
st

itu
tt,

 2
00

7 
61

 
D

en
ne

 p
ub

lik
as

jo
ne

n 
er

 v
er

ne
t i

 h
en

ho
ld

 ti
l Å

nd
sv

er
kl

ov
en

 a
v 

19
61

 
 

Ta
bl

e 
17

: N
um

be
r o

f r
oa

d 
ac

ci
de

nt
 fa

ta
lit

ie
s p

er
 k

ilo
m

et
re

 o
f r

oa
d,

 n
at

io
na

l h
ig

hw
ay

s, 
N

or
w

ay
 1

99
3-

20
00

. S
ou

rc
e:

 R
ag

nø
y,

 C
hr

is
te

ns
en

 a
nd

 
El

vi
k 

20
02

 

 
 

D
is

tr
ib

ut
io

n 
of

 ro
ad

 s
ec

tio
ns

 b
y 

nu
m

be
r o

f f
at

al
iti

es
 

Ac
ci

de
nt

 p
re

di
ct

io
n 

m
od

el
 

N
um

be
r o

f f
at

al
iti

es
 

Ac
tu

al
 

Po
is

so
n 

N
eg

at
iv

e 
bi

no
m

ia
l 

Ex
pl

an
at

or
y 

va
ria

bl
es

 
C

oe
ffi

ci
en

t 

0 
19

95
7 

19
72

8 
19

97
4 

C
on

st
an

t 
-7

.1
54

 

1 
89

5 
12

74
 

85
4 

Ln
(A

A
D

T)
 

0.
84

2 

2 
13

5 
41

 
16

3 
S

pe
ed

 li
m

it 
50

 k
m

/h
 

R
ef

er
en

ce
 c

at
eg

or
y 

3 
43

 
1 

39
 

S
pe

ed
 li

m
it 

60
 k

m
/h

 
-0

.0
20

 

4 
9 

0 
10

 
S

pe
ed

 li
m

it 
70

 k
m

/h
 

0.
38

5 

5 
3 

0 
3 

S
pe

ed
 li

m
it 

80
 k

m
/h

 
0.

17
2 

6 
1 

0 
1 

S
pe

ed
 li

m
it 

90
 k

m
/h

, r
ur

al
 ro

ad
 

0.
09

0 

7 
0 

0 
0 

S
pe

ed
 li

m
it 

90
 k

m
/h

, c
la

ss
 B

 ro
ad

 
0.

61
0 

8 
1 

0 
0 

S
pe

ed
 li

m
it 

90
 k

m
/h

, c
la

ss
 A

 ro
ad

 
0.

87
9 

N
 

21
04

4 
21

04
4 

21
04

4 
N

um
be

r o
f l

an
es

 
-1

.9
67

 

 
 

 
 

N
um

be
r o

f i
nt

er
se

ct
io

ns
/k

m
 

0.
08

2 

 
 

 
 

D
um

m
y 

fo
r t

ru
nk

 ro
ad

 
0.

25
5 

M
ea

n 
0.

06
46

 
 

 
 

 

V
ar

ia
nc

e 
0.

09
76

 
 

 
E

st
im

at
ed

 v
ar

ia
nc

e 
0.

07
45

 

O
ve

r-
di

sp
er

si
on

 p
ar

am
et

er
 

7.
91

 
 

 
O

ve
r-

di
sp

er
si

on
 p

ar
am

et
er

 
2.

39
 

 



State-of-the-art approaches to road accident black spot management and safety analysis of road networks  

62 Copyright © Transportøkonomisk institutt, 2007 
Denne publikasjonen er vernet i henhold til Åndsverkloven av 1961 

3.9 The treatment of time 
Time is usually not entered explicitly as a variable in accident prediction models. 
Some accident prediction models are based on data that refer to several years and 
may want to describe changes over time explicitly. Different approaches have 
been taken to this. One option, exemplified by Hauer et al (2002B), is to develop 
a separate accident model for each period concerned. The drawback of this option 
is that the number of accidents for a single period will be smaller than for multiple 
periods, making a reliable estimation of model parameters more difficult. 
Sometimes, inexplicable fluctuations in model parameters will be found, which 
raises the issue of whether smoothed estimates should be applied. 

A second option, exemplified in the models developed by Mountain et al (1998) is 
to account for changes over time in terms of a trend parameter. The coefficients 
for the explanatory variables, except for time, then apply to the entire period 
covered. The trend term is used to adjust the predicted numbers for year-by-year 
changes. There are two limitations to this approach: The first one is that, usually, 
a single term will be estimated to represent changes over time. This means that 
these changes are assumed to be constant, like a constant percentage decline or 
increase in the number of accidents from one year to the next. Long-term trends 
may, however, not always be constant. Another limitation is that in estimating a 
trend term, the assumption is normally made that accident data for successive 
years are independent, which is not the case. Time series of accident data tend to 
display autocorrelation, that is successive observations are correlated. Unless this 
is accounted for, the standard error of the trend term will be underestimated. 

Successive observations of a Poisson variable are, however, uncorrelated. If an 
accident prediction model has been fitted that accounts for all systematic variation 
in accident counts, the residuals will not display autocorrelation and not cause 
erroneous estimates of standard errors. 

A third approach, advocated by Lord and Persaud (2000), is to apply a generalised 
estimating equations procedure in order to explicitly account for the 
autocorrelation present in accident data and estimate separate adjusting factors for 
each year covered by the model. This is statistically more complex than the other 
two approaches, but is theoretically more correct. 

An issue related to the treatment of time in accident prediction models is the 
question of how long the period covered by the data can be without having to 
enter time as an explanatory variable in the model. Consider the data shown in 
Figure 8 referring to injury accidents in Sweden from 1991 to 2001. The stability 
of the figures is striking. No clear trend can be discerned. 

Nevertheless, factors influencing the number of accidents may have changed 
during this period. It is likely that traffic volume has increased, while some of the 
factors affecting accident rate have influenced it favourably, leading to a very 
stable total number of accidents. If mean values applying to the entire period are 
used for these explanatory variables, important changes in their effects on 
accidents may go undetected. For a further discussion of this point, see the 
discussion on the use of averages for traffic volume in section 3.14. 
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Figure 8: Count of police-reported injury accidents in Sweden 1991-2001 

3.10 Controlling for endogeneity 
Endogeneity can be a problem in accident prediction models, in particular models 
that include road safety treatments among the explanatory variables. Endogeneity 
refers to the tendency for the dependent variable in a model – typically the count 
of accidents – to influence one or more of the independent variables used to 
explain the dependent variable. The presence of endogeneity in an accident 
prediction model can lead to grossly erroneous estimates of the effects of some 
variables. 

In an instructive paper, Kim and Washington (2006) explain what endogeneity is, 
how it may affect model estimates, and how to control for it. Consider, as an 
example, the use of left-turn lanes in junctions. Left-turn lanes are more likely to 
be installed in junctions that have many vehicles turning left, and many accidents 
associated with left turns, than in otherwise similar junctions that do not 
experience these problems. In short, the selection for treatment is strongly 
influenced by the dependent variable of the model, i.e. the count of accidents. If 
this is not recognised, one may erroneously find that the presence of left-turn 
lanes is associated with a higher expected number of accidents than if there are no 
left turn lanes. 

The solution to the problem is to employ two-stage modelling. A model is first 
developed to describe the selection for treatment by means of left turn lanes, i.e a 
model that explains the probability that a junction will have left turn lanes. The 
results of that model are then used in the main model, which will thus control for 
endogeneity. This can make a great difference to the results, as shown in Table 
18. The table is based on Tables 2 and 4 in the paper of Kim and Washington. 
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Table 18: Estimated coefficients for selected variables without and with control for 
endogeneity. Source: Kim and Washington 2006 

Coefficients for selected 
variables 

 
Without control for endogeneity 

 
With control for endogeneity 

Log of AADT major road 0.3227 0.1289 

Log of AADT minor road 0.2868 0.2756 

Left-turn lane indicator 0.6897 -0.1653 

Number of driveways 0.1142 0.1583 

Lighting indicator -0.5925 -0.6520 

 

It is seen that without control for endogeneity, left turn lanes are found to be 
associated with an increased number of accidents. With control for endogeneity, 
left turn lanes are found to improve safety. The coefficients for the other variables 
did not change materially as endogeneity was controlled for. 

3.11 Causal interpretation of relationships found 
Discussions about the causality of statistical relationships usually start with the 
statement: Correlation does not equal causation. Correlation is necessary for 
causation, but not sufficient. What more should there be to a statistical 
relationship in order to interpret it as evidence of a causal relationship? This 
question has been discussed at some length by Elvik (2001, 2007) and Hauer 
(2005A), among many others. It is a complex question; space does not permit an 
extensive discussion of it in this paper. Suffice it to note that the following criteria 
(the list is not necessarily exhaustive) have been proposed to help assess if a 
statistical relationship is causal: 

1. Internal consistency of the relationship, with respect to, for example, 
subsets of data in a study or different specifications of multivariate 
models. 

2. Invariance with respect to potentially confounding factors, meaning that a 
relationship does not vanish when potentially confounding factors are 
controlled for. Application of this criterion requires a clear definition of 
what a potentially confounding variable is (see below). 

3. Plausibility in terms of a known mechanism or well-established scientific 
law that accounts for the statistical relationship between cause and effect. 

4. Support for counterfactual statements, meaning that the relationship has a 
genuine predictive capacity (see example below). 

The first criterion, internal consistency, means that the coefficient estimated for a 
variable should remain substantively unchanged (i.e. identical within the bounds 
of statistical uncertainty) across different model specifications or subsets of the 
data. 

This criterion is closely related to the second criterion, which is that to defend a 
causal interpretation of a coefficient showing a statistical relationship, this 
relationship should not vanish when potentially confounding variables are 
controlled for. One should, however, take great care to specify a model of the 
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relationships between variables that clearly identifies those variables that are 
potentially confounding and those that are not. Unless statistical estimation is 
guided by such a model, there is a risk of controlling for variables that should not 
be controlled for, and neglect to control for variables that should be controlled for. 

Findings emerging from accident prediction models can be more or less plausible. 
It is, for example, not very plausible that raising the speed limit will improve the 
safety of a road. Yet, a statistical association suggesting that this is the case has 
been found in many models (see e.g. Ragnøy et al 2002, Hauer et al 2004). 

Ideally speaking, model building seeks to reproduce law-like relationships. A 
scientific law supports counterfactual statements (see next section). This criterion 
will be satisfied, or at least to some extent supported, if an accident prediction 
model produces broadly correct predictions for a data set that was not used in 
fitting the model. Such predictive success indicates that the relationships included 
in a model are valid in general, and not just idiosyncratic or local. 

3.12 Assessing the predictive performance of a model 
As noted before, to predict is not the same as to explain. Most accident prediction 
models are not in fact predictive models, but explanatory models. Their predictive 
performance is mostly unknown. One of the very few models whose predictive 
performance has actually been tested, is a model developed by Partyka. The 
predictive performance of this model is shown in Figure 9 (Partyka 1991). The 
original model was a very simple model fitted to fatality count data for the United 
States from 1960 through 1982. The model included just three numerical variables 
and a dummy variable for the year 1974. As shown by Figure 9, the fitted values 
trace the actual values as a shadow; in fact the two series (actual and predicted) 
are almost indistinguishable. The squared multiple correlation coefficient for the 
model fitted to 1960-1982 data was 0.98 (leaving aside for the moment the 
question of whether this is a good measure of goodness-of-fit). 

But look what happened when this model was used to predict for the years 1983-
1989. By 1989, it over predicted the number of fatalities by nearly 20,000. The 
fact that this model fitted past data as perfectly as any model possibly could, did 
not ensure that it predicted correctly. Explaining past trends does not ensure that 
future trends can be reliably predicted.  

There are at least two ways of evaluating the predictive performance of an 
accident prediction model. The first one is to use the model to predict accident 
counts in future years, as shown above. The second one is to use only half the data 
set to fit a model and use the other half of the data set to test its predictive 
performance. One rarely sees any of these tests of predictive performance applied. 
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Figure 9: Predictive performance of a model fitted to fatality data for the United States. 
Based on Partyka 1991.  

 

Testing predictive performance is essential if one wants to support a causal 
interpretation of model estimates. One of the criteria of causality is that statistical 
relationships are reproduced over time in different contexts. In fact, to interpret a 
statistical relationship as a statement of a scientific law, the relationship must 
support counterfactual statements (Hempel 1965). A counterfactual statement is 
an empirically testable statement about what would have happened if a certain 
causal factor had not been present. A trivial example will clarify this idea. 

We observe that the water in a small pond has frozen during the night. From the 
meteorological service, we are able to verify that the temperature dropped below 
zero degrees Celsius for sufficiently long last night for the water to freeze. We are 
then able to explain why the water was frozen in the morning. A counterfactual 
statement would then be: If the temperature had not dropped below zero degrees 
Celsius, the water in the pond would not have frozen. This is contrary to what 
actually happened; yet it is a testable statement. The statement: Water freezes only 
when the temperature drops below zero, is a scientific law, since it can be verified 
that it supports the above counterfactual statement. 

By the same token, if the number of accidents increases when traffic volume 
increases, we would expect the number of accidents not to increase when traffic 
volume does not increase. This, like any other statement about the association 
between accidents and explanatory factors, is of course only valid when 
everything else remains constant. The assumption that everything else remains 
constant is never correct in observational road safety studies. Partyka (1991), for 
example, speculates that the poor predictive performance of her model may be 
attributed to an unforeseen decline in drinking and driving in the United States in 
the nineteen eighties. Does this mean that the statistical relationships fitted in the 
original model broke down after 1982, and did not have the capacity to support 
counterfactual statements? There is no way of observing the counterfactual 
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condition directly; we only know what actually happened, not what might have 
happened. Yet, it is nevertheless possible to assess what would have happened if 
the decline in drinking and driving had not occurred. This can be done by refitting 
the model to data for the period 1960-1989, adding the years 1983-1989 to the 
data set. If the coefficients estimated in the original model remain substantively 
unchanged in the refitted model, this indicates that the effects captured by these 
coefficients are stable over time and invariant with respect to the presence or 
absence of other causal factors influencing fatalities. Such stability and invariance 
indicates a support for counterfactuals, albeit much weaker than the support 
usually obtained in the natural sciences. 

In Partyka’s original model, the coefficient for the number of unemployed 
workers was –1.8569. In the revised model, the coefficient was –1.3686. In the 
original model, the coefficient for the non-labour force was +0.9616. In the 
revised model, it was +1.2934. Standard errors are not given, but the sign and 
magnitude of the coefficients are similar, suggesting that effects are broadly 
speaking invariant and unaffected by the decline in drinking and driving. This 
suggests that the effects are causal. 

3.13 Application of model estimates in the empirical Bayes 
approach to road safety estimation 
An accident prediction model gives an estimate of the expected number of 
accidents for a roadway element that has a certain combination of traits. In most 
models, these include traffic volume, characteristics of highway geometry and 
type of traffic control. Most accident prediction models will not include all factors 
that produce systematic variation in accident counts. Hence, estimates of the 
expected number of accidents derived from accident prediction models are mean 
values for units that have a given combination of traits. The expected number of 
accidents for a specific unit will normally differ from the mean value for units that 
have similar general traits. 

What is the best estimate of the long term expected number of accidents or 
accident victims for a given roadway element, given the fact that we know some, 
but not all of the factors affecting accident occurrence? According to the 
empirical Bayes method (Hauer 1997), the best estimate of safety is obtained by 
combining two sources of information: (1) The accident record for a given site, 
and (2) An accident prediction model, showing how various factors affect 
accident occurrence. Denote by R the recorded number of accidents, and by λ the 
normal, expected number of accidents as estimated by an accident prediction 
model. The best estimate of the expected number of accidents for a given site is 
then: 

 

E(λ|r) = α ⋅ λ + (1 - α) ⋅ r   (21) 

 

The parameter α determines the weight given to the estimated normal number of 
accidents for similar sites when combining it with the recorded number of 
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accidents in order to estimate the expected number of accidents for a particular 
site. The best estimate of α is: 

 

α = 

k
λ

+1

1     (22) 

 
λ is the normal expected number of accidents for this site, estimated by means of 
an accident prediction model and k is the inverse value of the over-dispersion 
parameter of this function, that is 1/μ. To illustrate the use of the empirical Bayes 
method, suppose that the normal expected number of accidents for a 1-kilometre 
road section during a period of eight years has been estimated by means of an 
accident prediction model to be 3.73. The over-dispersion parameter for this 
model is 0.3345; hence k is 2.99. The weight to be given to the estimate based on 
the prediction model thus becomes 1/[1 + (3.73/2.99)] = 0.445. Seven accidents 
were recorded. The long term expected number of accidents is estimated as: 

E(λ|r) = 0.445 ⋅ 3.73 + (1 – 0.445) ⋅ 7 = 5.54. 

The interpretation of the three different estimates of safety can be explained as 
follows. 3.73 is the number of accidents one would normally expect to occur at a 
similar site, that is one which has the same traffic volume, the same speed limit, 
the same number of lanes, etc, as the site we are considering. 7 accidents were 
recorded. Part of the difference between the recorded and normal number of 
accidents for this type of site is due to random variation. An abnormally high 
number of accidents due to chance cannot be expected to continue; a certain 
regression-to-the-mean must be expected. In the example given above, the 
regression-to-the-mean expected to occur in a subsequent eight year period is (7 – 
5.54)/7 = 0.209 = 20.9%. The difference between the site-specific expected 
number of accidents (5.54) and the normal, expected number of accidents for 
similar sites (3.73) can be interpreted as an effect of local risk factors for the site, 
causing it to have a higher expected number of accidents than similar sites. 

Applying the empirical Bayes method to a site that had 0 recorded accidents, but 
was otherwise identical to the site used as an example above, gives a site-specific 
expected number of accidents during eight years of 1.66 (the normal, expected 
number of accidents for similar sites was 3.73). For this site, the difference 
between the site-specific expected number of accidents and the normal, expected 
number of accidents for similar sites can be interpreted as the effect of local safety 
factors, which are factors causing the site to be safer than otherwise similar sites. 

3.14 Assessing potential sources of error in predictive 
models 
There are many sources of error in accident prediction models. The most 
frequently discussed sources of error include: 

• Omitted variable bias 

• Errors due to co-linearity among explanatory variables 
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• Wrong functional form for relationships between variables 

To illustrate these potential problems, examples will be given. Brüde and Larsson 
(1993) fitted the following rather simple accident prediction models to data for 
intersections in Sweden: 

Number of pedestrian accidents = 0.0000734 x MV0.50 x PED0.72 

Number of bicycle accidents = 0.0000180 x MV0.52 x CYC0.65 

MV is the number of motor vehicles (AADT = annual average daily traffic), PED 
is pedestrian volume, and CYC is cyclist volume. 

Based on these functions, the number of accidents can be estimated for any 
combination of values for the number of motor vehicles and the numbers of 
pedestrians or cyclists. 

These functions suggest a log-linear relationship between exposure and the 
number of accidents. If, as an example, the number of pedestrians increases from 
500 to 1,000, and the number of motor vehicles increases from 5,000 to 10,000, 
the number of pedestrian accidents (that is accidents in which pedestrians are 
struck by cars) increases by a factor of nearly 2.33. In other words, the number of 
accidents is more than doubled when total traffic volume is doubled (from 5,500 
to 11,000). Despite this, the risk run by each pedestrian, at a given amount of 
motor traffic, declines strongly as the number of pedestrians increases. If the 
number of pedestrians increases from 100 to 1,000, the risk of getting injured, 
stated as the number of pedestrian accidents per pedestrian exposed, drops by 
about 50%. A further increase in the number of pedestrians from 1,000 to 2,000 is 
associated with a further reduction in the injury rate per pedestrian of some 17%. 

Now suppose pedestrian volume had not been known and a model predicting 
pedestrian accidents had been fitted to data containing motor vehicle volume as 
the only explanatory variable. The exponent for motor vehicle volume then 
becomes 0.90, as opposed to 0.50 in the model that included data on pedestrian 
volume in addition to motor vehicle volume. Because motor vehicle volume and 
pedestrian volume are correlated, the coefficient for motor vehicle volume will 
contain part of the effect of pedestrian volume when that is not included in the 
model. This is an example of omitted variable bias. The coefficient for motor 
vehicle volume is biased, because it includes part of the effect of pedestrian 
volume as well as the effect of motor vehicle volume.  

Jonsson (2005) compared model coefficients for models that included bicyclist or 
pedestrian volume and models that did not include these variables. In the model 
that included both motor vehicle and bicyclist volume, the coefficient for motor 
vehicles was 0.76 and the coefficient for bicyclist volume was 0.35. When 
bicyclist volume was omitted, the coefficient for motor vehicle volume changed to 
0.93. Similarly, for pedestrian volume, the coefficients when it was included were 
0.83 for motor vehicle volume and 0.38 for pedestrian volume. When pedestrian 
volume was omitted, the coefficient for motor vehicle volume changed to 0.92. 

How can we know if a model is afflicted by omitted variable bias? The answer is 
that we can never know this for certain. Even a model that has a very high 
explanatory power may be biased due to omitted variables, since any omitted 
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variables could be correlated both with the variables included in the model and 
the residual term of the model. 

Possibly the most common form of omitted variable bias in current accident 
prediction models is the incompleteness of exposure data. These data rarely 
include pedestrian or cyclist exposure. 

Explanatory variables in accident prediction models tend to be correlated, 
sometimes to such a high degree that inclusion of both or all the correlated 
variables may lead to imprecise estimates of the coefficients. Estimates are not 
biased, but will be associated with large standard errors. A case in point is the 
study of quantified road safety targets by Elvik (2001). In that study, each country 
was identified by a dummy variable. One of the countries included was the United 
States. Inclusion of the United States caused problems in the multivariate analysis, 
because the dummy variable identifying the United States was almost perfectly 
correlated with the fatality count, see figure 10. 

The correlation between these two variables is 0.989, that is virtually 1. It is 
therefore nearly impossible to estimate the effects on fatality counts of any other 
variable very precisely in analyses that include the United States, but exclude 
measures of travel exposure (the inclusion of which might alleviate the problem, 
as travel exposure is very much greater in the United States than in the other 
countries, thus removing the effect of “size” of the country). 
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Figure 10: Correlation between country dummy for United States and fatality count 

 

There is little guidance concerning the choice of functional form in accident 
prediction models, although Hauer and Bamfo (1997) and Hauer (2004) give 
some useful hints. An extensive discussion is also given by Fridstrøm (1999), who 
relies on Box-Cox transformations of variables in order to identify the most 



State-of-the-art approaches to road accident black spot management and safety analysis of road networks 

Copyright © Transportøkonomisk institutt, 2007 71 
Denne publikasjonen er vernet i henhold til Åndsverkloven av 1961  

correct functional form. The use of such transformations allows for great 
flexibility and does not restrict the choice of functional form to any specific form, 
such as logarithmic, exponential, etc. Mensah and Hauer (1998) discuss two 
problems related to the use of average values when estimating the relationship 
between traffic volume and accidents. Both these averaging problems can lead to 
the fitting of wrong functional forms for the relationship between traffic volume 
and accidents.  

The first problem is called “argument averaging”. It occurs when traffic volume is 
represented by an average value, like AADT, rather than the actual traffic volume 
at the time of each accident. Traffic volume is known to vary during the day, the 
week and from month to month. To correctly describe the relationship between 
traffic volume and accidents, data reproducing these variations, rather than 
averaging them out, should be used in fitting models. Mensah and Hauer show 
that using an average value can lead to a biased functional form. 

The second problem is called “function averaging”. It occurs when a single 
function is used to model the relationship between traffic volume and accidents, 
when there is reason to believe that this relationship varies, depending on 
circumstances. As an example, traffic volume in darkness may have a different 
relationship to accidents than traffic volume during daytime. Separate functions 
should be fitted for daytime and darkness to reflect this fact. When a single 
function is fitted, representing all 24 hours of a day, it may misrepresent the 
relationship between traffic volume and accidents. Predictions based on a single 
function will not necessarily be identical to the mean of predictions based on 
separate functions, in particular not if these functions are all non-linear. The bias 
could be substantial. 

In principle, the problem could be solved, not by developing separate functions 
for daylight and darkness, but by including light conditions as an explanatory 
variable in a model. 

3.15 Concluding remarks: criteria for assessing the quality 
of accident prediction models 
Despite the many problems identified in this section, there is no doubt that the 
development of what we may term “modern” accident prediction models during 
the past 15 years represents a major step forward in road safety research. Road 
safety research is now rapidly becoming a mature scientific discipline (Hauer 
2005B), a discipline that can be taught in universities and that provides a basis for 
a rational approach to road safety management. 

Development in the field of accident modelling has been so rapid, that some 
models that were considered as state-of-the-art only ten years ago look somewhat 
primitive today. There is today a danger – clearly pointed out by Lord, 
Washington and Ivan (2005) – of moving too far in the direction of mathematical 
sophistication and perfect fitting of models. Accidents are a very complex 
phenomenon; hence models also need to be complex in order to faithfully 
reproduce the main features of reality. Yet, the art of model building is, and will 
always be, the art of making the right simplifications. A good model is not 
necessarily an immensely complex model that perfectly fits the data in every 
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detail. A good model is rather the simplest possible model that adequately fits the 
data, and that contains relationships that may be presumed to hold in general, and 
not be an idiosyncratic feature of a particular data set or an esoteric model 
formulation. 

Based on the discussion in this section, the following criteria are proposed for 
assessing the quality of accident prediction models: 

1. As a basis for developing a model, the probability distribution of accidents 
in the original data set should be investigated. This investigation should 
include several of the most commonly used probability distributions for 
accidents. It is important to note, however, (see example in next chapter) 
that the initial distribution will not necessarily conform to any known 
probability distribution for accidents. 

2. The residual terms of the model should be specified. A negative binomial 
distribution of residuals is often a reasonable hypothesis. The structure of 
residuals should always be tested. 

3. Separate models should be developed for accidents at different levels of 
severity. As a minimum, separate models are required for fatal accidents, 
injury accidents (sometimes including fatal accidents) and property-
damage-only accidents. Alternatively, multi levels models can be used. 

4. Separate models should be developed for different types of roadway 
elements. Roadway elements include: road sections, intersections, bridges, 
tunnels, curves, railroad-highway grade crossings. 

5. Data on exposure should be decomposed to the maximum extent possible. 
For road sections, these data should preferably indicate the proportions of 
all traffic made up by heavy vehicles, cars, motorised two-wheelers, 
pedestrians and cyclists. For intersections, exposure should be specified 
according to traffic movements passing the intersection. 

6. The functional form used to describe the relationship between each 
independent variable and accidents should be explicitly chosen and 
reasons given for the choice. Alternative functional forms should be tested 
as a basis for the choice made. 

7. Explanatory variables should be entered stepwise into the model. 
Variables describing exposure should always be entered first. When 
presenting the model, the full array of coefficients estimated at each stage 
should be presented, to allow an examination of the stability of the 
coefficients with respect to which variables were included in the model. 

8. The correlations between explanatory variables should be examined to 
detect the possible presence of co-linearity. There is, however, no good 
solution to the problem of co-linearity. It does not bias coefficient 
estimate, but makes them highly uncertain. 

9. The overall goodness-of-fit of the final model should be reported in a way 
that permits variation in accident counts to be decomposed into: (a) 
Systematic variation explained by the model, (b) Systematic variation not 
explained by the model, (c) Random variation. 
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10. The structure of any systematic variation not explained by a model should 
be examined and a choice made as to whether over-dispersion is 
adequately described by a single parameter or should be modelled by a 
variable parameter. 

11. Any model should explicitly identify those variables for which a causal 
interpretation is sought and those variables that are to be considered as 
confounding with respect to the causal relationships evaluated. 

12. Explicit operational criteria for causality should be stated in models 
seeking causal interpretation of their findings. By operational criteria are 
meant criteria that can be evaluated empirically. Causal interpretations 
should only be proposed if all important operational criteria are met. 
Possibly the best way to test for causality is out-of-sample predictions. 

13. The possible presence of omitted variable bias should always be 
discussed. It is understood that no accident prediction model can be 
“complete” by including absolutely every conceivable variable that may 
influence accident occurrence. 

14. The predictive performance of an accident prediction model should be 
tested. This is done by applying the model to a data set that was not used 
in developing the model. 

15. Accident prediction model should permit results to be synthesised. This 
means that any accident prediction model should report the standard errors 
of all coefficients in such a way as to permit a formal synthesis of the 
findings of multiple accident prediction models (meta-analysis). 

These criteria can be further developed into a quality scoring system for accident 
prediction models, designed to assign a numerical quality score to each model. 
This quality score will be an important piece of information when synthesising the 
findings of several accident prediction models. 
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4 Safety analysis of road networks 

This chapter will discuss network safety management, or safety analysis of road 
networks. As many of the conceptual issues are analogous to those that arise in 
black spot management – such as trying to account for sources of systematic 
variation in accident counts and controlling for effects of random variation 
(regression-to-the-mean), the conceptual discussion will not be repeated here. 
Three currently used systems for network safety management will be presented. 
Before presenting these systems, a short overview of some choices that must be 
made when developing safety analysis of road networks as a tool for network 
safety management will be discussed. 

4.1 Stages of safety analysis of road networks 

4.1.1 Determining the scope and level of analysis 
The scope of a road network safety analysis is usually the entire road system of a 
jurisdiction. A jurisdiction may, for smaller states, include the whole country 
(Norway), or it may include a federal state (Germany, United States). Sometimes 
analysis is done by route, usually applying an official route numbering system. 
Whichever approach is taken, a network safety analysis will usually comprise at 
least several hundred, more commonly perhaps several thousands, of kilometres 
of road. Traffic volume and highway design parameters will normally display 
great variation among the roads selected for analysis. 

In most countries, roads that are classified and numbered will have numbered 
sections. Each of these sections is, ideally speaking, homogeneous with respect to 
traffic volume and other factors influencing the number of accidents, but sections 
may differ greatly among themselves with respect to length, traffic volume and 
other factors influencing the number of accidents. A choice must be made on how 
to define the “elementary unit” for analysis. Each such elementary unit ought, 
ideally speaking, to be homogeneous (i.e. each independent variable should take 
on the same value throughout the unit, e.g. a section should not have two different 
speed limits, one for half the length, another for the other half) with respect to 
factors influencing the number of accidents. This will sometimes require the use 
of rather short road sections as elementary units. A disadvantage of using short 
road sections is that it greatly reduces variation in the number of accidents. If, as 
an example, each section is just 10 metres long, almost all sections will have 0 
accidents and some very few will have 1 accident. The prospect of reliably 
identifying factors explaining variation in accident counts is then greatly 
diminished, as nearly all observed variation will be random. Furthermore, some of 
the causal factors for accidents exert their influence over a stretch of road at least 
as long as the braking distance. 
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On the other hand, by using very long road sections one ironically runs into the 
same problem, but from the opposite end of the spectrum. The use of very long 
road sections necessitates the smoothing of data pertaining to shorter subsections, 
for example by using mean values for traffic volume for a long road section along 
which traffic volume is known to vary from one subsection to the next. This 
obviously also represents a loss of information and a loss of statistical power to 
identify sources of variation in the number of accidents. 

The choice of elementary unit of analysis must therefore be a compromise. In the 
three systems for safety analysis of road networks presented below, different 
choices have been made. In Germany, it is advised to use as long road sections as 
possible – limits of what is considered as possible being, for example, major 
changes in road layout, speed limit or traffic volume. In the United States, on the 
other hand, elementary road sections as short as 0.1 mile (0.16 km) are used, but a 
procedure for aggregating these into longer sections for the purpose of accident 
analysis has been developed. In Norway 1 kilometre road sections have been 
used. 

In addition to the length of the road sections, the duration of the period to which 
data apply also influences the prospects for a successful analysis. A period of 3-5 
years is commonly recommended, but in Norway a period of 8 years was used in 
the first network safety analysis that was performed. 

4.1.2 Determining the treatment of classificatory variables in analysis 
Roads are usually classified by administrative class and by function. For the 
purposes of network safety management, it is the functional classification that is 
of greatest interest. A choice to be made is whether to treat roads with different 
functional classifications as separate categories in network safety management, or 
merge all roads into the same system. 

The use of accident prediction models is an important element of modern network 
safety management systems. If all types of road are included in the same accident 
prediction model, as has been done in Norway, variables should be included in 
that model to help identify the various types of road. 

If, on the other hand, motorways, rural main roads, urban main roads, rural 
secondary roads and urban secondary roads are treated as separate categories, 
both the number of sections and the number of accidents will be reduced. 
Denmark has opted for an extensively classification of the road system, and the 
fitting of rather simple accident prediction models for each of the categories. 

Any accident prediction model will, to certain extent, gloss over some details and 
will not identify all sources of systematic variation in the number of accidents. If a 
certain type of road has a very different safety record from the rest of the road 
system, it might therefore be wise to treat it as a category of its own, as it may be 
the case that an accident prediction model will not fully account for the special 
characteristics of the type of road.  
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4.1.3 Developing a criterion for safety performance 
The safety performance of a road can be described in terms of a number of 
different indices. Some candidates include: 

1. The total expected number of accidents 

2. The cost-weighted total expected number of accidents  

3. The excess expected number of accidents for a certain section compared to 
an otherwise identical section with a normal expected number of accidents 
frequency 

4. The cost-weighted excess number of accidents for a certain section 
compared to an otherwise identical section with a normal expected number 
of accidents and costs close to the mean cost of accidents 

5. Prospective cost-effectiveness, which refers to the possibility of finding 
cost effective treatment for a road section 

6. An abnormally high proportion of a specific type of accident or specific 
accident types. 

It is not always necessary to make a choice between these criteria. Thus, one 
might initially identify roads that have a high total expected number of accidents 
(criterion 1). Next these roads might be ranked according to the cost of accidents 
(criterion 2). Analyses of potential safety treatments could be made for sections 
that had the highest cost-weighted expected number of accidents, and then these 
sections might be ranked by prospective cost-effectiveness (criterion 5). The 
various criteria can be applied at different stages of the network safety 
management process, permitting an effective use of all available information. 

It is important to stress the fact that all criteria, except for the last one, are based 
on the expected number of accidents, not the recorded number of accidents. For 
large road systems, or long road sections, model-based estimates of the expected 
number of accidents may converge with the recorded number of accidents. For 
any given road section, on the other hand, this may not be the case. Whenever the 
recorded number of accidents is low (for example less than about 20), it provides 
a highly uncertain estimate of the expected number of accidents. 

Confidence in the predictions for the expected number of accidents derived from 
accident prediction models has to depend, however, on whether these predictions 
are better than predictions based on using the recorded number of accidents. In a  
later section of this chapter, data from a study made in Norway will be presented 
to shed light on the question of how accurate estimates of the expected number of 
accidents based on the EB-method are. 

Criteria 3 and 4 are quite similar to the usual criterion of a road accident black 
spot. These criteria appear to be theoretically attractive, since they recognise the 
facts that: (1) No accident prediction model will ever be able to perfectly predict 
the number of accidents for a given road section, since not all explanatory 
variables will be included in an accident prediction model, and (2) An excessive 
number of accidents at a given road section may be attributable to local risk 
factors present at that road section. 
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However, the comparative study in terms of epidemiological criteria (sensitivity 
and specificity in black spot identification) in chapter 2 did not fully support this 
theory. On the contrary, it indicated that the risk factors not included in the 
accident prediction model do not always have stable effects over time on the 
expected number of accidents. 

4.1.4 Identifying road sections with substandard safety performance 
If an accident prediction model has been used, sections with substandard road 
safety performance can be identified by using the EB-method, as shown in chapter 
2, dealing with black spot management. This method can of course be 
supplemented by statistical tests to make sure that an abnormally high expected 
number of accidents is not merely the result of chance variation. 

In Norway, another approach was chosen. National roads were divided into three 
groups based on expected injury severity density (see below), hazardous road 
sections being defined as those that constituted the upper 10% of the distribution. 

Irrespective of the approach chosen, road sections identified as hazardous are 
likely to form a distinct minority of all road sections that are included in the 
network safety management system. 

4.1.5 Approach to the analysis of road sections with substandard 
safety performance 
While hazardous road sections ought to be identified in terms of the expected 
number of accidents, accident analysis must be based on the recorded number of 
accidents. This introduces an element of inconsistency in network safety 
management. Whereas accident modelling and the identification of hazardous 
road locations, employing state-of-the-art techniques, fully recognises the major 
contribution that randomness makes to accidents, the traditional approach to 
accident analysis treats accident data as deterministic. 

Suppose, for example, that the EB-estimate of the expected number of accidents 
for a road section is 9.6, but that 13 accidents have been recorded at this section. 
According to the logic of the EB-method, the 3.4 accidents that exceed the EB-
estimate are the result of chance variation. How should we treat these accidents in 
accident analysis? 

The traditional approach to accident analysis is fundamentally flawed and lacks 
credibility since it fails to recognise the contribution of randomness to accidents. 
There is, accordingly, a significant risk that it produces spurious explanations 
only. Chapter 2 indicated ways in which accident analysis at black spots can be 
improved to make them more rigorous and more open to empirical testing. Can 
something similar be applied to accident analysis as part of network safety 
management? 

In Norway, the logic of the EB-approach to road safety analysis has been carried 
into the stage of accident analysis (Ragnøy and Elvik 2003). Analysis is initially 
performed in terms of recorded injury severity, i.e. the recorded number of injured 
road users weighted by the cost of the injuries. The objective of analysis is to 
identify the accident types that make the largest contribution to injury severity 
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density. Following an analysis in terms the recorded number of injured road users, 
results are adjusted by the EB-method so as to reflect long term values. An 
example of how this adjustment might function is given in Table 19. 

 
Table 19: Adjusting recorded injury severity density to remove random variation. Source: 
Ragnøy and Elvik 2003 

 Annual mean values based on 8 years of data 

 
 
Accident type 

 
Number of 

killed 

Number of 
critically 
injured 

Number of 
seriously 
injured 

Number of 
slightly injured 

 
Injury severity 

density 

Recorded values and recorded injury severity density 

Off the road    1.000 1.000 

Rear-end    0.625 0.625 

Head-on 0.125  0.250 1.625 7.665 

Other    0.375 0.375 

Total 0.125  0.250 3.625 9.665 

Expected long term values for injury severity density 

Off the road  0.004  0.918 1.018 

Rear-end  0.003  0.574 0.631 

Head-on 0.083 0.008 0.186 1.492 5.831 

Other  0.002  0.344 0.379 

Total 0.083 0.016 0.186 3.328 7.852 
Kilde: TØI report 883/2007 

 

The adjusted values have removed the effects of regression-to-the-mean and 
therefore serve as the basis for estimating the effects of potential 
countermeasures. 

4.2 A review of some systems for safety analysis of road 
networks 

4.2.1 Network safety management in Germany 
The following description of road network safety management in Germany is 
based on guidelines published by the Bundesanstalt für Strassenwesen and the 
French motorway directorate (Sétra) (BASt and Setra 2005). The objectives of 
safety analysis of road networks are: 

1. to determine sections within the road network with a poor safety 
performance based on accident data and where deficits in road 
infrastructure have to be suspected and 

2. to rank the sections by potential savings in accident costs in order to 
provide a priority list of sections to be treated by road administrations. 

When these tasks have been performed, the following tasks are to analyse the 
accident structure of the sections in order to detect abnormal accident patterns 
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which can lead to possible improvement measures, and finally to offer the 
possibility to compare the costs of improvement measures to the potential savings 
in accident costs in order to rank measures by their benefit-cost ratio. 

A distinction is made between three levels of accident severity: 

1. Serious injury accidents, which includes fatal accidents 

2. Slight injury accidents 

3. Property-damage-only accidents. 

The number of fatal accidents for a given road section is generally regarded as too 
low to provide a reliable basis for analysis. Hence, fatal accidents are considered 
in conjunction with accidents resulting in serious injury. 

According to the German guidelines, road sections used in network screening 
should be as long as possible. However, a basic requirement is that each section 
must then be characterised by more or less the same traffic volume, the same 
cross section and the same type of environment (cross town link or rural section). 
It is recommended that the sections should be around 10 km (at least 3 km) long. 

Four indicators of safety performance are used to help identify hazardous road 
sections: 

1. Accident density, which is the number of accidents per kilometre of road 
per year 

2. Accident cost density, which is the total societal cost of accidents per 
kilometre of road per year 

3. Accident rate, which is the number of accidents per million vehicle 
kilometres of travel 

4. Accident cost rate, which is the societal cost of accidents per million 
vehicle kilometres of travel. 

All these indicators are stated in terms of the recorded number of accidents during 
a period of 3-5 years. No attempt is made to adjust for possible random 
fluctuations. 

To identify road sections with poor safety performance, accident cost density is 
used. As resources are limited, those sections where improvements can be 
expected to have the highest benefit-cost ratio should be treated first. Therefore, 
information is needed on the accident costs per kilometre (or at a given location) 
and the safety potentials for possible remedial measures. 

The safety potential (SAPO) is defined as the amount of accident costs per 
kilometre road length (cost density) that could be reduced if a road section had a 
best practice design. The higher the safety potential the more societal benefits 
can be expected from improvements of the road. The safety potential SAPO is 
calculated as the difference between the current accident cost density of the 
section ACD within the period under review and the basic accident cost density 
bACD. 

The basic accident cost density bACD represents the anticipated average annual 
number and severity of road accidents (represented by the accident costs) per 
kilometre which can be achieved by a best practice design at the given average 
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daily traffic AADT. It is estimated as the product of basic accident cost rate 
bACR and average daily traffic AADT. 

To make sure that the road sections identified as hazardous are not merely the 
result of random variation in accident counts, statistical tests are performed. The 
test consists of the comparison of the observed number of accidents A with the 
expected number of accidents eA of that section and the determination of the 
importance of the deviation by calculating the confidence interval of the observed 
values (Poisson law). 

The sections of the road network are ranked according to the magnitude of the 
safety potential. Sections with a high rank are selected for more detailed 
engineering study designed to propose safety measures. It is recommended to 
present the results of the analysis in diagrams. 

The detailed engineering study consists of an accident analysis. The initial stages 
of this analysis are identical to the analysis of road accident black spots. During 
the initial analyses, sites visits are not performed, but relevant information is 
extracted from computerised accident records. 

4.2.2 Network safety management in Norway 
The basic elements of the current Norwegian approach to safety analysis of road 
networks were developed in 2002 (Ragnøy, Christensen and Elvik 2002). 

National roads were divided into 1-kilometre sections. The main question 
addressed in the new approach to the identification of hazardous road locations is 
this: How can road sections that have an abnormally high expected proportion of 
accidents resulting in fatal or serious injury be reliably identified?  

In order to answer this question, the concept of injury severity density (ISD) was 
developed. The general definition of injury severity is given by this formula 
(Ragnøy, Christensen and Elvik 2002): 

 

ISD = 
yearKm

SLISERCRIFAT
⋅

+++ 00.156.774.2220.33  

 

FAT = fatally injured road users (death within 30 days of accident) 
CRI = critically injured road users 
SER = seriously injured road users 
SLI = slightly injured road users 

These are the levels of injury severity used in official Norwegian road accident 
statistics. A critical injury is defined as an injury that is life-threatening or that 
leads to permanent impairment. A serious injury is one that is not critical, but 
generally requires treatment in hospital as an in-patient. Slight injuries are all 
those that are attended to by medical professionals, but will normally not require 
an overnight stay in hospital. For the country as a whole, about 2-3% of all 
injured road users recorded in official statistics are fatally injured, about 1-2% are 
critically injured, about 8-12% are seriously injured, and about 85-90% are 
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slightly injured. The total number of injured road users recorded per year is about 
12,000 per year. In the above definition, km denotes kilometres of road and year 
denotes the number of years for which accident statistics are used in estimating 
injury severity density. 

The weights assigned to each level of injury severity (33.20; 22.74, etc) are 
proportional to the societal costs of one injury of the stated severity (Elvik 1993). 
The cost of a fatal injury, or more precisely the value to society of preventing one, 
is roughly 33 times greater than the value of preventing a slight injury. When 
estimating injury severity density, one fatal injury is thus given 33.2 times the 
weight of one slight injury. In this way, fatal and serious injuries count for more 
than their numbers alone would imply. 

In order to develop unbiased estimates of injury severity density for any road 
section, the empirical Bayes method was applied. In order to apply the empirical 
Bayes approach, multivariate models were fitted to explain the number of injured 
road users. Coefficient estimates for these models will be presented later. The 
empirical Bayes approach combines the estimates of the number of injured road 
users based on such models with the count of injured road users for a specific road 
section according to this equation: 

 

RVEVRE iiiiii ⋅−+⋅= )1()()/( λλ    (23) 

 

E(λ|Ri) denotes the expected number of injured road users at a given level of 
injury severity (i = fatal, very serious , serious or slight), given that Ri injured 
road users were recorded. E(λi) is the number of injured road users predicted by a 
multivariate model. Vi is the weight given to the predicted number of injured road 
users, 1 – Vi is the weight given to the recorded number of injured road users. 
According to Hauer (1997), the weight given to the predicted number of injured 
road users is given by: 

 

)(
)(1

1

λ
λ
i

i
i

E
VarV

+
=     (24) 

 

Var(λi) is the systematic variation of the number of injured road users, E(λi) is the 
predicted number. An estimate of Var(λi) was obtained from the negative 
binomial regression models presented below. 

The dependent variable in the models fitted was the number of injured road users 
of a given injury severity for each kilometre of road during a period of eight 
years. As noted above, injured road users in Norway are classified in four groups 
with respect to injury severity. Separate models were fitted for each level of injury 
severity. The models fitted had the following general form: 
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eAADT xcb
i ∑⋅⋅= ⋅αλ    (25) 

 

λi is the estimated number of injured road users of severity i (i = fatal, critical, 
serious or slight). α is a constant term, AADT is traffic volume raised to a power 
b, and e is the exponential function, that is the base of the natural logarithms (e = 
2.71828), raised to a sum of parameters (c) for each of the explanatory variables 
(x). Models of a similar structure are widely used (for a recent example, see 
Taylor, Baruya and Kennedy 2002). The following explanatory variables were 
used (Ragnøy, Christensen and Elvik 2002): 

1. Annual average daily traffic (AADT; a continuous variable) 

2. Speed limit (50, 60, 70, 80 or 90 km/h) 

3. The type of road, for roads that have a speed limit of 90 km/h (motorway 
class A, motorway class B, other road) 

4. Number of lanes (1, 2, 3, etc) 

5. Number of junctions per kilometre (0, 1, 2, etc) 

6. Whether the road has the status of a national main road or not (yes/no) 

 

Speed limit was represented by a set of dummy variables, using the speed limit of 
50 km/h as the reference category. Whether or not a road was designated as a 
main road was also represented by a dummy variable. The other variables were 
entered in logarithmic form. For the number of lanes and the number of junctions 
per kilometre, 1 was added to the observed value to avoid taking the logarithm of 
zero. This was not done for AADT.  

Analysis was based on data for 1-kilometre road sections of national roads in 
Norway for the period 1993-2000. The unit of analysis was 1 kilometre of road 
with data on accidents and explanatory variables for eight years (total for all eight 
years; not year-by-year). The length of national roads in Norway is about 26,500 
kilometres. In the analyses, only sections with complete data on all explanatory 
variables were used. Moreover, these data had to take on constant values for the 
whole length of each 1-kilometre section. These restrictions resulted in a data set 
of 21,044 1-kilometre sections. 

Table 20 shows the parameters of the models fitted, their standard errors, the 
exact P-value and statistics describing the explanatory power of each model. 

It is seen that the expected number of killed or injured road users is closely related 
to traffic volume. The coefficient for traffic volume is quite stable, varying from 
0.809 for seriously injured road users to 0.972 for slightly injured road users. The 
coefficients for speed limits fluctuate in both sign and magnitude and are not 
statistically significant for fatal and critical injuries. For serious and slight 
injuries, the coefficients indicate that the expected number of injured road users 
drops as speed limit goes up. It is highly unlikely that these coefficients show the 
true effects of raising speed limits; rather they reflect the fact the high speed limits 
are found on high-standard roads (see the instructive discussion of Taylor, Baruya 
and Kennedy 2002). 
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Expected injury severity density was estimated for each of the 21,044 1-kilometre 
sections of road by combining model predictions according to equation 5 with the 
recorded number of injured road users for each road section. 

Hazardous road sections are identified according to expected injury severity 
density. The Public Roads Administration of Norway has divided national roads 
into three classes according to expected injury severity density: (1) “Green roads”. 
These are the safest roads, that is those 50% of all national roads that have the 
lowest values for expected injury severity density and where no accidents 
resulting in fatalities or serious injuries have been recorded during the last eight 
years. (2) “Red roads”. The are the most hazardous roads, that is those 10% of all 
national roads that have the highest values for expected injury severity density, 
and where accidents resulting in fatalities or serious injuries have been recorded 
during the last eight years. (3) “Yellow roads”. These are the remaining 40% of 
the national roads, that are neither red nor green. 

The analysis found that a higher percentage of main roads are red than of other 
national roads. 17.5% of main roads are red, versus 7.4% of other national roads. 
There is a very strong relationship between traffic volume and the probability that a 
main road is red. Mean AADT (annual average daily traffic) for red main roads is 
about 10,600, as opposed to only 600 for green main roads. Main roads that have an 
AADT of about 10,000 or more are often red throughout their whole length. 

Once hazardous road sections were identified, an analysis of accidents is 
performed, using routinely available data only and not visiting each section. The 
objective of the accident analysis is to identify those accidents that make the 
greatest contribution to injury severity density. 
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As part of the accident analysis, accidents were described according to these 
characteristics (Ragnøy and Elvik 2003): 

1. Type of accident. A detailed numerical code was applied, identifying more 
than 50 different types of accident. 

2. Road surface condition (bare dry, bare wet, snow or ice, etc.) 

3. Weather conditions (sunny, overcast, raining, etc.) 

4. Light conditions (daylight, dusk or dawn, darkness) 

The analysis of accidents was based on the recorded number of accidents, or, 
more precisely, on the number of injured road users, specified according to injury 
severity in each type of accident. It was found that head-on crashes (frontal 
impacts) contribute substantially to overall injury severity density at those road 
sections that have the highest values for recorded injury severity density. 
Accordingly, safety treatments that can prevent or reduce the severity of frontal 
impacts are likely to be most effective in reducing injury severity density. 

For some road sections, there was no type of accident making a dominant 
contribution to injury severity density; rather a disorderly pattern of accidents was 
observed, in which each type of accident made only a minor contribution to the 
overall score for injury severity density. For these road sections, the choice of 
effective safety treatments is more difficult and may require more in-depth 
studies. 

4.2.3 SafetyAnalyst in the United States 
SafetyAnalyst is a comprehensive software system for network safety 
management, developed by the United States Federal Highway Administration. 
Safety Analyst is described in four comprehensive white papers, comprising a few 
hundred pages. It is beyond the scope of this report to reproduce this detailed 
description. We refer to the four white papers, all of which can be downloaded 
from: www.safetyanalyst.org. The white papers are: 

Module 1. Network screening (Harwood, Torbic, Bauer, Persaud, Lyon and Hauer 
2002) 
Module 2. Diagnosis and countermeasure selection (Harwood, Potts, Smiley, 
Bahar and Hauer 2002) 
Module 3. Economic appraisal and priority-ranking (Harwood and Rabbani 2002) 
Module 4. Evaluation (Harwood, Bauer and Torbic 2002)  

Some key points from each module will be mentioned. 

The objective of the network screening module is to use available data to review 
the entire roadway network under the jurisdiction of a particular highway agency 

and identify and prioritise those sites that need safety improvement. The network 
screening process relies on information on roadway characteristics and safety 
performance to identify those sites that are the strongest candidates for further 
investigation. The following types of data are used: 

• Geometric design features 
• Traffic control features 
• Traffic volumes 



State-of-the-art approaches to road accident black spot management and safety analysis of road networks  

86 Copyright © Transportøkonomisk institutt, 2007 
Denne publikasjonen er vernet i henhold til Åndsverkloven av 1961 

• Accident history 
• Accident characteristics 
• Safety performance functions (SPFs) 

To perform network screening, the first stage is to develop EB-estimates of the 
expected number of accidents by type and severity for each basic roadway 
element. A road section consists of multiple subsections or segments of varying 
length. The homogeneous section approach treats each of the segments, whatever 
its length, independently and assesses whether the safety performance of that 
segment is of sufficient concern to be selected for detailed engineering studies. 
The homogeneous section approach considers the safety performance of fixed-
length segments within the homogeneous section and also includes a “peak 
searching” algorithm to identify the segments with highest accident frequency 
within a homogeneous section.  

The peak searching algorithm is an innovative feature of Safety Analyst. It can be 
explained by means of an example. The implementation of this procedure requires 
a database where accidents can be allocated to subsections within each road 
section. With such a database, the road section is divided into 0.1-mile (0.16 
kilometres) basic subsections as shown in Figure 12. A window consisting of W 
consecutive basic subsections is said to be of size W. Initially, the left edge of the 
window is placed at the left boundary of the road section, and the average 
expected accident frequency within the window is computed. The window is then 
moved one basic subsection to the right, and the average expected accident 
frequency is computed again. This is done until the right edge of the window 
reaches the right boundary of the road section. The process is repeated for 
windows of all feasible sizes. The largest of the averages so computed is the 
largest peak for a window of size W. Segment AA’ in the figure is the highest 
peak when W = 3. Segment BB’ is the second highest peak when W = 3. Segment 
CC’ is the highest peak when W = 7. If two segments of size W overlap, only that 
with the higher estimated average is retained for further consideration. For 
example, if on segment AA’ the statistical precision criterion is met, segment AA’ 
rather than segment CC’ will be considered further. The reason is that the rank of 
segment AA’ is bound to be higher than the rank of CC’ and, if a diagnosis is 
conducted, the vicinity of AA’ will be considered when a project is formulated. If 
the statistical precision criteria on AA’ are not met but they are met on CC’, only 
the latter will be retained for ranking. To specify the required statistical precision, 
use of “limiting coefficients of variation” is suggested. The coefficient of 
variation of an estimate, denoted as “CV,” is given by: 

 

CV = (standard error of estimate) / (expected estimate)  
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Figure 12: Peak searching algorithm in Safety Analyst. Source: Safety Analyst website. 

 

Once peaks have been identified, sites are ranked for detailed study by 
prospective cost-effectiveness of potential safety improvements. The prospective 
effectiveness can be based on either the expected accident frequency or the 
expected excess accident frequency. Prospective cost-effectiveness can be based 
on average costs of particular project types and benefits can be assumed to be 
proportional to either expected accident frequency or expected excess accident 
frequency. 

The profiles-and-peaks routine can be illustrated by means of an example. Figure 
13 shows EB-estimates for the number of injury accidents for a 55 kilometre long 
section of national road in Norway. The example is based on the description of the 
profiles and peaks method given by Hauer (2000). 
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Figure 13: EB-estimates of the expected number of accidents per kilometre for a 55 
kilometre long national road in Norway 

 

As can be seen, the expected number of accidents varies considerably along the 
road. The mean EB-expected number of accidents for the entire road was 4.68 per 
kilometre. In Figure 13, a few sections that appear to have an abnormally high 
expected number of accidents have been marked by shaded rectangles. The 
question is: can these sections be treated as single peaks and accidents analysed 
for the entire shaded sections as a whole? 

To answer this question, the standard error of the EB-estimates was estimated for 
each kilometre of road. Then windows of size 3, 4 and 6 were used to identify 
potential peaks. A window of size 3 was judged appropriate for the section to the 
left of the figure, a window of size 4 was judged appropriate for the section 
starting at kilometre 40. Finally a window of size 6 was judged appropriate for the 
section starting at kilometre 49 (to the right in Figure 13). The critical value for 
the coefficient of variation was set to 0.10. 

By applying the windows, the sections to the left and right of Figure 13 passed the 
criterion; the section around kilometre 40 did not pass the criterion. For the 
section to the left, the total recorded number of accidents was 31, which was 
considerably higher than the normal number (model estimate) of 21.8. The EB-
estimate was 28.1. For the section to the right, the total recorded number of 
accidents was 38; the normal number was 62 and the EB-estimate was 43.3. Thus, 
this section did not have an abnormally high number of accidents compared to 
what was expected for it. It only appeared to have an abnormally high number of 
accidents when compared to the mean EB-estimate for the entire road. 

Module 2 of Safety Analyst, diagnosis and countermeasure selection, points out 
that: “The nature of accidents is that they are rare, multi-causal, and random. 
Because accidents are rare, it follows that the presence of accident patterns 
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provides compelling evidence of underlying safety deficiencies. Because accidents 
are random, it also follows that the accident history at a given site will only 
provide partial information about safety at that site. Experience tells us that: 

• Safety deficiencies can contribute to serious accidents, for which there 
was no evidence by way of a previous pattern. 

• Some sites with high numbers of accidents do not have readily identifiable 
accident patterns. 

• There can be evidence in the accident history that a given deficiency has 
contributed to accidents at one site while at another site, with a similar 
deficiency, there is no clear pattern of associated accidents. 

• A given deficiency can contribute to different accident types.” 

For each specific location to be investigated, Safety Analyst will perform the 
following sequence of steps: 

1. Prepare collision diagram template 

2. Plot collision diagram 

3. Identify accident patterns 

4. Diagnose safety problems 

5. Identify and select appropriate countermeasures 

To help diagnose factors contributing to accidents, Safety Analyst asks a number 
of diagnostic questions. An example of a diagnostic question for single-vehicle 
accidents on a horizontal curve is as follows: 

When drivers reach a curve, which is much sharper than curves on the 
preceding road section, especially if they are unfamiliar, they can be surprised 
and find themselves approaching it at too high a speed. Is the curvature of the 
accident site unusually sharp in relation to the previous several miles of road 
section? 

An investigator familiar with the road network may be able to answer this 
question on the basis of his or her own knowledge, or by using a photolog or 
accessing design drawings. If the answer to this question is no, then it will not be 
flagged as a diagnosis for further investigation. Otherwise, it will be flagged and 
will be included in items to investigate further during the site visit. 

Each diagnostic question is framed to lead to a diagnosis and each diagnosis is 
framed to lead to a countermeasure. The diagnostic questions are intended to 
cover typical accident scenarios, rather than rare and unusual situations. 

The output of the office investigation diagnosis stage will be in the form of an 
interim report comprising all assembled information, such as: 

• Collision diagram with all characteristics (traffic devices, geometrics, etc.) 
to be taken to the site if that investigation will take place 

• List of accident patterns to be diagnosed, annotated with the season and 
time of the week and of the day, if any, that the accidents are most 
prevalent 
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• List of questions about the site that could not be answered in the office 

• List of initial diagnoses 

• List of potential countermeasures to be considered in the field 

Following a field visit to each site, a final proposal for countermeasures is 
developed. Countermeasure selection involves multiple technical and budgetary 
considerations that are not appropriate for automated decision making. 

For each concern identified through the diagnostic process, a list of potential 
countermeasures will be selected. If more than one concern has been identified at 
the site, more than one countermeasure list will be generated. 

4.3 The performance of the Empirical Bayes method 
In Norway and the United States, network safety management relies on the 
empirical Bayes (EB) method. In Germany this method is not used. 

There are a number of problems in using the EB-method, in particular when using 
it to evaluate the effects of safety measures (Persaud and Lyon 2007). Here, we 
would like to know how well it performs when predicting the number of accidents 
expected to occur without treatment. 

In this section, the predictive accuracy of EB-estimates of the expected number of 
accidents derived in four ways is compared: 

1. Estimates derived from the empirical distribution of accidents in a 
population of sites, employing the method of moments. 

2. Estimates derived from the parameters of a negative binomial distribution 
fitted to an empirical distribution of accidents in a population of sites by 
means of the maximum likelihood technique. 

3. Estimates derived by combining the predictions of a simple accident 
prediction model and the recorded number of accidents for a site. 

4. Estimates derived by combining the predictions of a more elaborate 
accident prediction model and the recorded number of accidents for a site. 

The four versions represent increasing levels of statistical refinement and 
complexity. All four versions of EB-estimates are compared to the traditional, 
naïve assumption of treating the recorded number of accidents as an unbiased 
estimate of the expected number of accidents. 

4.3.1 Data and methods 
Two data sets are used to test the predictive accuracy of EB-estimates. Short 
descriptions of these are given below. 

 

4.3.1.1 Norwegian data 
The Norwegian data refer to 21,738 1-kilometre sections on national roads. For 
these road sections, data on accidents and a number of variables associated with 
the number of accidents were obtained for the period 1997-2004. This period was 
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divided into two periods: 1997-2000 and 2001-2004. All road sections existed 
throughout both periods. The road sections remained unchanged, except for 
ordinary road maintenance, like resurfacing, renewing road markings and 
replacing traffic signs. On a few road sections, more extensive treatments may 
have been introduced. It is, however, reasonable to assume that more extensive 
treatments were applied only to a few road sections (less than 10 %), and that 
such treatments took place at a nearly constant rate throughout the entire period 
(Elvik and Rydningen 2002). We may thus treat this population of road sections 
as suitable for testing the accuracy of EB-estimates designed to answer the 
question: what would have happened if no measure had been introduced? 

Table 21 shows the empirical distribution of road sections by the number of 
accidents during the period 1997-2000. The distribution has a very long tail, 
which is not shown in full. The maximum number of accidents recorded was 47. 
Negative binomial distributions have been fitted to the empirical distribution by 
means of the method of moments and the maximum likelihood method. The 
empirical distribution deviates significantly from both these negative binomial 
distributions. The mean number of accidents was 0.589, the variance was 2.547. 

Two accident prediction models have been fitted to the data. The simplest of these 
models was of the form: 

Simple model = iixeAADTβ γ∑α ⋅  

AADT denotes annual average daily traffic, e is the base of natural logarithms and 
α, β and γ are coefficients estimated by maximum likelihood techniques. The 
explanatory variables, in addition to traffic volume, included speed limit, type of 
road (freeway versus other), number of lanes, number of intersections per 
kilometre and a dummy for trunk road status. The more advanced model was of 
the form: 

Advanced model = ii(AADT /1000) xe eAADT εβ γ∑α ⋅  

All explanatory variables were the same as in the simple model, but the advanced 
model allows for a different shape of the relationship between traffic volume and 
the number of accidents. 

 

4.3.1.2 Portuguese data 
The Portuguese data refer to 3,470 road sections on rural two-lane roads. Most of 
these had a length of 250 metres. For these road sections, data on accidents and 
other variables were available for the period 1994-2003. This period was divided 
into the two periods 1994-1998 and 1999-2003. Accident prediction models of the 
same form as shown above for Norway were fitted for the period 1994-1998 and 
estimates of the expected number of accidents for the period 1999-2003 obtained. 
Explanatory variables included AADT, road width and section length. 

Table 23 shows the empirical distribution of sections by number of accidents 
during 1994-1998. Negative binomial distributions were fitted to the empirical 
distribution by means of the method of moments and the maximum likelihood 
method. Unlike the Norwegian data, the negative binomial distributions fit well to 
the empirical distribution in the Portuguese data. 
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4.3.2 Results 
4.3.2.1 Norwegian data 
Table 22 shows results for the Norwegian data set. Due to the long tail of the 
distribution, the table does not show all results for road sections that had 15 or 
more accidents in the first period. In most cases, EB-estimates are more accurate 
than using the count of accidents in the first period as an estimate of the expected 
number of accidents in the second period. A total of 34 predictions were made, for 
the counts of accidents represented in the data set (all counts from 0 through 15 
were represented and selected values between 16 and 47, making for 34 in total). 
EB-estimates were more accurate than the count of accidents in 29 of these 34 
cases. 

Estimates based on the simple accident prediction model were the most accurate 
in 11 cases; those based on the more advanced accident prediction model were the 
most accurate in 4 cases. EB-estimates not based on accident prediction models 
were the most accurate in 14 cases. Thus, predictive accuracy can be improved by 
using and accident prediction model, but this is not consistently the case. 
Moreover, an advanced accident prediction model does not necessarily improve 
predictions compared to a simpler accident prediction model. 

Figure 14 shows the percentage prediction error. It can be seen that the error 
associated with EB-estimates fluctuates randomly around the correct values. 
There is no tendency for EB-estimates to consistently predict too low or too high 
numbers. Using the accident count for the first period, on the other hand, yields 
consistently too high estimates for all sites that recorded any accidents at all 
during the first period. 

 

4.3.2.2 Portuguese data 
Table 24 shows results for the Portuguese data. A total of 17 predictions were 
made for sections that recorded 0, 1, 2, …, 17 accidents in the first period. 
Predictions based on EB-estimates are more accurate than predictions based on 
the count of accidents in all cases. However, none of the four versions of EB-
estimates provides consistently more accurate predictions than the others. 
Predictions based on maximum likelihood estimates of the parameters of the 
negative binomial distributions are the most accurate in 8 cases; model based 
predictions are the most accurate in 9 cases. An advanced accident prediction 
model is not associated with an improved predictive performance compared to a 
simple accident prediction model. 

Figure 15 shows percentage prediction errors. It is seen the all the predictions are 
too high for sites that recorded more than 2 accidents in the first period, although 
the EB-estimates are closer to the actual values than the count of accidents in the 
first period. In other words, EB-estimates do not adjust fully for regression-to-the-
mean in this data set. Relying on EB-estimates in a before-and-after study using 
this data set is therefore likely to have resulted in inflated estimates of the effects 
of safety measures. 
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4.3.3 Discussion and conclusions 
The empirical Bayes approach to road safety estimation has almost become the 
gold standard for observational before-and-after studies of road safety measures in 
the past 10 years. Before accepting the EB-approach as the gold standard we need 
to know how accurate it is. Does the approach really control adequately for 
regression-to-the-mean? 

The study presented here shows that the EB-approach nearly always provides 
better predictions of the number of accidents than the traditional approach of 
assuming that the recorded number of accidents is an unbiased estimator of the 
expected number of accidents. EB-estimates are, however, not always accurate. If 
the differences between EB-estimates and the actual number of accidents are 
small and random, such inaccuracies are fully acceptable – indeed inevitable, 
given the randomness inherent in accident counts. The results based on 
Norwegian data suggest that EB-estimates are in most cases very accurate and 
that the errors are unsystematic. This is reassuring and supports use of the EB-
approach. 

The findings based on Portuguese data were somewhat less reassuring. Although 
predictions based on EB-estimates were clearly better than those based on the 
count of accidents, they nevertheless were systematically too high for road 
sections that recorded more than 2 accidents in the first period. In the Portuguese 
data, EB-estimates did not fully remove regression-to-the-mean. It is not clear 
why this was the case. These findings should prompt further research and do not 
by themselves constitute a sufficient reason for rejecting the EB-approach. The 
EB-approach should be used until a better approach has been developed. It should 
be noted that as accident prediction models become ever more complex and 
refined, they may lead to more precise predictions, in particular by allowing the 
over-dispersion parameter to vary. The comparison in this paper was confined to 
models with a fixed over-dispersion parameter, differing only with respect to the 
parameters describing the shape of the relationship between traffic volume and the 
number of accidents. 
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Figure 14: Prediction error for EB-estimates for Norway 
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Figure 15: Prediction error for EB-estimates for Portugal 

4.4 Summary of key elements of safety analysis of road 
networks 
This chapter has reviewed key elements of safety analysis of road networks, 
which is a basic function of network safety management. The main objective of 
safety analysis of road networks is to identify road sections that have a potential 
for cost-effective improvements in road safety. Three systems for safety analysis 



State-of-the-art approaches to road accident black spot management and safety analysis of road networks 

Copyright © Transportøkonomisk institutt, 2007 99 
Denne publikasjonen er vernet i henhold til Åndsverkloven av 1961  

of road networks have been reviewed: The German system, the Norwegian system 
and the Safety Analyst system of the United States. 

Neither of these systems correspond to state-of-the-art practice. However, all 
systems have important elements in common, including: 

1. Safety analysis of road networks normally comprises an extensive network 
of roads of at least several hundred, but more commonly several thousand 
kilometres. 

2. Roads are to a certain extent pre-classified by type, such as motorways, 
rural main roads and urban main roads. 

3. For analysis, elementary units of analysis are defined. The elementary 
units should ideally speaking be completely homogeneous (within each 
unit) with respect to factors influencing the number of accidents. Whereas 
very short basic units are used in the United States, the approach in 
Germany is to make each section as long as possible. 

4. Safety analysis of road networks is designed to account for as many 
sources of variation in the number of accidents as possible. In Norway and 
the United States, this is done by means of accident prediction models. In 
Germany, various measures of safety performance are estimated as rates 
using traffic volume as the denominator. 

5. Road sections with a substandard safety performance can be identified in a 
number of ways. All three countries employ estimates of the costs of 
accidents to describe safety performance. 

6. In the United States, a routine has been developed for merging adjacent 
short sections into longer sections to obtain a better basis for accident 
analyses (the profiles and peaks method). A similar routine has not been 
developed in Norway and Germany. 

7. Analysis of accidents for sections identified as hazardous relies on the 
recorded number of accidents in all countries. In Norway, the results of 
analyses are adjusted to remove regression-to-the-mean. Similar 
adjustments are, as far as is known, not applied in Germany and the United 
States. 

8. Analysis of accidents is in all countries done in two stages: a preliminary 
analysis in the office, followed by a more detailed analysis by means of 
site visits. 

The system for safety analysis of road networks is very similar in Norway and the 
United States. The German system relying on accident rates or accident cost rates 
represents a different approach, not requiring the use of accident models. As 
discussed in detail in Chapter 3, accident modelling can be difficult and there are 
many pitfalls. Yet, on balance, the prevailing opinion today seems to be that 
approaches based on accident modelling are to be preferred, since they permit 
controlling for randomness in accident counts by means of the empirical Bayes 
method. 

The approach to accident analysis needs considerable development. Current 
techniques, as discussed in chapter 2, involve a number of uncertainties and the 
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conclusions drawn on the basis of traditional accident analyses have never 
actually been scrutinised critically, but seem to have been accepted by almost 
everybody as obviously correct. As yet, however, no fully satisfactory approach to 
accident analysis for hazardous road locations has been developed. 
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5 Discussion and conclusions 

The objective of this report was to describe state-of-the-art approaches to black 
spot management and safety analysis of road networks. By this is meant 
approaches that represent the best conceivable practice with respect to black spot 
management and safety analysis of road networks. 

Black spot management has a long tradition in traffic engineering. Yet, the 
approaches taken by different countries to black spot management are strikingly 
different. There is, accordingly, a need for discussing what constitutes state-of-
the-art practice. 

Research during the past 20 years has questioned many elements of the traditional 
approach to black spot management. Although a number of studies have cast 
doubt on some approaches to black spot management, this should be seen as a 
first input towards developing better approaches. 

The essential elements of an emerging state-of-the-art are as follows: 

1. Black spots should be identified in terms of the expected number of 
accidents, not the recorded number of accidents. 

2. Black spots should be identified by reference to a clearly defined 
population of sites, whose members can in principle be enumerated. 

3. Use of a sliding window approach to identifying black spots is 
discouraged. This approach artificially inflates variation in accident 
counts. 

4. To estimate the expected number of accidents, multivariate accident 
prediction models should be developed. 

5. The best estimate of the expected number of accidents for a single site is 
obtained by combining the recorded number of accidents with the model 
estimate for that site. This should be done by applying the empirical Bayes 
method. 

6. The performance of alternative critical values for the expected number of 
accidents qualifying a site as black spot should be investigated in terms of 
sensitivity and specificity. An optimal criterion should be chosen. 

7. The traditional criterion for a true black spot, which is that there is a 
dominant pattern of accidents, has not been validated. Analysis of 
accidents at black spots is best viewed as a means of developing 
hypotheses regarding potentially contributing factors to the accidents. 
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8. Analysis of black spots should recognise the possibility that an apparent 
pattern may arise as a result of chance alone. Binomial tests should be 
applied to determine the probability that a certain number of accidents of a 
certain type is the result of chance only. 

9. Analysis of black spots should employ a blinded design and rely on a 
comparison of the black spot to a safe location. The task of analysts is to 
identify risk factors for accidents. Analysts should not known which site is 
the black spot and which site is the safe one. 

10. Evaluation of the effects of black spot treatment should employ the 
empirical Bayes before-and-after design. 

A state-of-the-art approach to safety analysis of road networks should contain all 
these elements. In addition, a state-of-the-art approach to safety analysis of road 
networks should include a routine for merging adjacent sections for the purpose of 
accident analysis. The profiles and peaks algorithm is suitable for this purpose. 



State-of-the-art approaches to road accident black spot management and safety analysis of road networks 

Copyright © Transportøkonomisk institutt, 2007 103 
Denne publikasjonen er vernet i henhold til Åndsverkloven av 1961  

6 References 

Asher, H. B. (1976). Causal modelling. Sage Publications, Beverly Hills, CA. 

Brüde, U. And J. Larsson (1982). “Farliga” korsningar på det statliga vägnätet. 
Analys och åtgärdsförslag. VTI-meddelande 299. Statens Väg- och 
Trafikinstitut (VTI), Linköping. 

Brüde, U. and J. Larsson (1993). Models for predicting accidents at junctions 
where pedestrians and cyclists are involved. How well do they fit? Accident 
Analysis and Prevention, 25, 499-509. 

Cresswell, W. L. and P. Froggatt (1963). The causation of bus driver accidents. 
An epidemiological study. Oxford University Press, London. 

Danielsson, S. (1988). Estimation of the effects of countermeasures on different 
types of accidents in the presence of regression effects. Accident Analysis and 
Prevention, 20, 289-298. 

Deeks, J. J. (2001). Systematic reviews of evaluations of diagnostic and screening 
tests. Chapter 14, 248-282, in: Egger, M., G. Davey Smith and D. G. Altman 
(Eds):  Systematic reviews in Health care. Meta-analysis in context. BMJ 
books, Second edition, London. 

Elvik, R. (1988). Some difficulties in defining populations of “entities” for 
estimating the expected number of accidents. Accident Analysis and 
Prevention, 20, 261-275. 

Elvik, R. (1993). Økonomisk verdsetting av velferdstap ved trafikkulykker. 
Dokumentasjonsrapport. TØI-rapport 203. Transportøkonomisk institutt, Oslo. 

Elvik, R. (1997). Evaluations of road accident black spot treatment: a case of the 
Iron Law of evaluation studies? Accident Analysis and Prevention, 29, 191-
199. 

Elvik, R. (2001). Quantified road safety targets. An assessment of evaluation 
methodology. Report 539. Institute of Transport Economics, Oslo. 

Elvik, R. (2004). Traffic safety. Chapter 16 in M. Kutz  (Ed): Handbook of 
Transportation Engineering. McGrawHill, New York, NY. 

Elvik, R. (2006). New approach to accident analysis for hazardous road locations. 
Transportation Research Record, 1953, 50-55. 

Elvik, R. (2007). Operational criteria of causality for observational road safety 
evaluation studies. Paper TRB-07-0291. Forthcoming in Transportation 
Research Record. 



State-of-the-art approaches to road accident black spot management and safety analysis of road networks  

104 Copyright © Transportøkonomisk institutt, 2007 
Denne publikasjonen er vernet i henhold til Åndsverkloven av 1961 

Elvik, R. and U. Rydningen (2002). Effektkatalog for trafikksikkerhetstiltak. 
Rapport 572. Transportøkonomisk institutt, Oslo. 

Fridstrøm, L., J. Ifver, S. Ingebrigtsen, R. Kulmala and L. K. Thomsen (1995). 
Measuring the contribution of randomness, exposure, weather, and daylight to 
the variation in road accident counts. Accident Analysis and Prevention, 27, 1-
20. 

Fridstrøm, L. (1999). Econometric models of road use, accidents, and road 
investment decisions. Volume II. Report 457. Institute of Transport Economics, 
Oslo. 

Gaudry, M. and S. Lassarre (Eds) (2000). Structural road accident models. The 
international DRAG family. Pergamon Press, Oxford. 

German road and transport research association (2006). Recommendations on 
accident type maps including detailed definitions regarding black spot 
detection and analysis. Cologne. 

Geurts, K. (2006). Ranking and profiling dangerous accident locations using data 
mining and statistical techniques. Doctoral dissertation. Faculty of applied 
economics, Hasselt University, Hasselt. 

Greibe, P. (2003). Accident prediction models for urban roads. Accident Analysis 
and Prevention, 35, 273-285. 

Hakkert, A. S. and L. Braimaister (2002). The uses of exposure and risk in road 
safety studies. Report R-2002-12. SWOV Institute for Road Safety Research, 
Leidschendam. 

Harwood, D. W., K. M. Bauer and D. J. Torbic (2002). Safety Analyst: Software 
tools for safety management of specific highway sites. White paper for module 
4 – evaluation. Federal Highway Administration, Washington DC. 

Harwood, D. W., I. B. Potts, A. Smiley, G. Bahar and E. Hauer (2002). Safety 
Analyst: Software tools for safety management of specific highway sites. White 
paper for module 2 – diagnosis and countermeasure selection. Federal 
Highway Administration, Washington DC. 

Harwood, D. W. and E. K. Rabbani (2002). Safety Analyst: Software tools for 
safety management of specific highway sites. White paper for module 3 – 
economic appraisal and priority ranking. Federal Highway Administration, 
Washington DC. 

Harwood, D. W., D. J. Torbic, K. M. Bauer, B. N. Persaud, C. A. Lyon, and E. 
Hauer (2002). Safety Analyst: Software tools for safety management of specific 
highway sites. White paper for module 1 – network screening. Federal 
Highway Administration, Washington DC. 

Hauer, E. (1986). On the estimation of the expected number of accidents. Accident 
Analysis and Prevention, 18, 1-12. 

Hauer, E. (1995). On exposure and accident rate. Traffic Engineering and Control, 
36, 134-138. 

Hauer, E. (1997). Observational before-after studies in road safety. Pergamon 
Press, Oxford. 



State-of-the-art approaches to road accident black spot management and safety analysis of road networks 

Copyright © Transportøkonomisk institutt, 2007 105 
Denne publikasjonen er vernet i henhold til Åndsverkloven av 1961  

Hauer, E. (2000). Working paper 10. Screening: methods and software. 
Unpublished paper prepared for task force developing Safety Analyst. 
Available at: www.roadsafetyresearch.com 

Hauer, E. (2001). Overdispersion in modelling accidents on road sections and in 
Empirical Bayes estimation. Accident Analysis and Prevention, 33, 799-808. 

Hauer, E. (2004). Statistical road safety modelling. Transportation Research 
Record, 1897, 81-87. 

Hauer, E. (2005A). Cause and effect in observational cross-section studies on 
road safety. Unpublished manuscript, dated March 1, 2005. 

Hauer, E. (2005B). The road ahead. Journal of Transportation Engineering, 131, 
333-339. 

Hauer, A., B. K. Allery, J. Kononov and M. S. Griffith (2004). How best to rank 
sites with promise. Transportation Research Record, 1897, 48-54. 

Hauer, E. and J. Bamfo (1997). Two tools for finding what function links the 
dependent variable to the explanatory variables. Paper presented at ICTCT 
workshop in Lund, Sweden, November 5-7, 1997. Available at: 
www.roadsafetyresearch.com 

Hauer, E., F. Council and Y. Mohammedshah (2004). Safety models for urban 
four-lane undivided road segments. Transportation Research Record, 1897, 96-
105. 

Hauer, E., D. W. Harwood, F. M. Council and M. S. Griffith (2002B). Estimating 
safety by the empirical Bayes method. A tutorial. Transportation Research 
Record, 1784, 126-131. 

Hauer, E., J. Kononov, B. Allery and M. S. Griffith (2002A). Screening the road 
network for sites with promise. Transportation Research Record, 1784, 27-32. 

Hauer, E. and B. N. Persaud (1984). Problem of identifying hazardous road 
locations using accident data. Transportation Research Record, 975, 36-43. 

Hauer and Quaye (1990). On the use of accident or conviction counts to trigger 
action. Unpublished manuscript. University of Toronto, Safety Studies Group, 
Department of Civil Engineering. 

Hauer, E., K. Quaye and Z. Liu (1993). On the use of accident or conviction 
counts to trigger action. Transportation Research Record, 1401, 17-25. 

Hempel, C. G. (1965). Aspects of scientific explanation and other essays in the 
philosophy of science. The Free Press, New York, NY. 

Ivan, J. N. (2004). New approach for including traffic volumes in crash rate 
analysis and forecasting. Transportation Research Record, 1897, 134-141. 

Jarrett, D. F., C. R. Abbess and C. C. Wright (1988). Empirical estimation of the 
regression-to-mean effect associated with road accident remedial treatment. 
Proceedings of Traffic Safety Theory and Research Methods, Session 2, 
Models for Evaluation. SWOV Institute for Road Safety Research, 
Leidschendam. 



State-of-the-art approaches to road accident black spot management and safety analysis of road networks  

106 Copyright © Transportøkonomisk institutt, 2007 
Denne publikasjonen er vernet i henhold til Åndsverkloven av 1961 

Jonsson, T. (2005). Predictive models for accidents on urban links. Doctoral 
dissertation. Bulletin 226. Lund Institute of Technology, Department of 
Technology and Society, Traffic Engineering, Lund. 

Kim, D-G. and S. Washington (2006). The significance of endogeneity problems 
in crash models: an examination of left-turn lanes in intersection crash models. 
Accident Analysis and Prevention, 38, 1094-1100. 

Kononov, J. (2002). Identifying locations with potential for accident reductions. 
Use of direct diagnostics and pattern recognition methodologies. 
Transportation Research Record, 1784, 153-158. 

Lee, J. and F. L. Mannering (2002). Impact of roadside features on the frequency 
and severity of run-off-road accidents: an empirical analysis. Accident Analysis 
and Prevention, 34, 349-361. 

Lemaire, J. (1995). Bonus-malus systems in automobile insurance. Kluwer 
Academic Publishers, Boston, MA. 

Lenguerrand, E., J. L. Martin and B. Laumon (2006). Modelling the hierarchical 
structure of road accident data – application to severity analysis. Accident 
Analysis and Prevention, 38, 43-53. 

Lord, D. and B. N. Persaud (2000). Accident prediction models with and without 
trend. Application of the generalized estimating equations procedure. 
Transportation Research Record, 1717, 102-108. 

Lord, D.; S. P. Washington and J. N. Ivan (2005). Poisson, Poisson-gamma and 
zero-inflated regression models of motor vehicle crashes: balancing statistical 
fit and theory. Accident Analysis and Prevention, 37, 35-46.  

Maher, M., I. Summersgill (1996). A comprehensive methodology for the fitting 
of predictive accident models. Accident Analysis and Prevention, 28, 281-296. 

McGuigan, D. R. D. (1981). The use of relationships between road accidents and 
traffic flow in “black spot” identification. Traffic Engineering and Control, 22, 
448-453. 

Mensah, A. and E. Hauer (1998). Two problems of averaging arising in the 
estimation of the relationship between accidents and traffic flow. 
Transportation Research Record, 1635, 37-43. 

Miaou, S-P., and D. Lord (2003). Modeling traffic crash-flow relationships for 
intersections. Dispersion parameter, functional form, and Bayes versus 
empirical Bayes methods. Transportation Research Record, 1840, 31-40. 

Miaou, S-P., A. Lu and H. S. Lum (1996). Pitfalls in using R2 to evaluate 
goodness of fit of accident prediction models. Transportation Research Record, 
1542, 6-13. 

Morrison, D.G. and D. C. Schmittlein (1981). Predicting future random events 
from past performance. Management Science, 27, 1006-1023. 

Mountain, L., B. Fawaz and D. Jarrett (1996). Accident prediction models for 
roads with minor junctions. Accident Analysis and Prevention, 28, 695-707. 

Mountain, L., M. Maher and B. Fawaz (1998). The influence of trend on estimates 
of accidents at junctions. Accident Analysis and Prevention, 30, 641-649. 



State-of-the-art approaches to road accident black spot management and safety analysis of road networks 

Copyright © Transportøkonomisk institutt, 2007 107 
Denne publikasjonen er vernet i henhold til Åndsverkloven av 1961  

OECD road research group (1976). Hazardous road locations: identification and 
countermeasures. OECD, Paris. 

Oh, J.; S. Washington and K. Choi (2004). Development of accident prediction 
models for rural highway intersections. Transportation Research Record, 
1897, 18-27. 

Overgaard Madsen, J. C. (2005). Skadesgradsbasered sortpletudpegning – fra 
crash prevention til loss reduction i de danske vejbestyrelsers sortpletarbejde. 
Ph d afhandling. Trafikforskningsgruppen, Institut for samfundsudvikling og 
planlægning, Aalborg Universitet, Aalborg. 

Partyka, S. (1991). Simple models of fatality trends revisited seven years later. 
Accident Analysis and Prevention, 23, 423-430. 

Persaud, B. and C. Lyon (2007). Empirical Bayes before-after studies: lessons 
from two decades of experience and future directions. Accident Analysis and 
Prevention, 39 (forthcoming). 

Persaud, B., C. Lyon and T. Nguyen (1999). Empirical Bayes procedure for 
ranking sites for safety investigation by potential for improvement. 
Transportation Research Record, 1665, 7-12. 

Persaud, B., H. McGee, C. Lyon and D. Lord (2003). Development of a procedure 
for estimating expected safety effects of a contemplated traffic signal 
installation. Transportation Research Record, 1840, 96-103. 

Qin, X., J. N. Ivan, N. Ravishanker and J. Liu (2005). Hierarchical Bayesian 
estimation of safety performance functions for two-lane highways using 
Markov Chain Monte Carlo modelling. Journal of Transportation Engineering, 
131, 345-351. 

Ragnøy, A., P. Christensen, R. Elvik (2002). Skadegradstetthet. Et nytt mål på 
hvor farlig en vegstrekning er. Rapport 618. Transportøkonomisk institutt, 
Oslo. 

Ragnøy, A. and R. Elvik (2003). Trafikksikkerhetsanalyse av stamvegnettet. 
Rapport 649. Oslo, Transportøkonomisk institutt. 

Rosenthal, R. and D. B. Rubin (1978). Interpersonal expectancy effects: the first 
345 studies. Behavioral and Brain Sciences, 3, 377-415. 

Rothman, K. and S. Greenland (1998).  Modern epidemiology. Second edition. 
Lippincott Williams and Wilkins, Philadelphia, PA. 

Shankar, V., J. Milton and F. Mannering (1997). Modeling accident frequencies as 
zero-altered probability processes: an empirical inquiry. Accident Analysis and 
Prevention, 29, 829-837. 

Statens vegvesen. (2006). Håndbok 115. Analyse av ulykkessteder. Draft dated 
October 19, 2006. Vegdirektoratet, Oslo. 

Taylor, M. C., A. Baruya and J. V. Kennedy (2002). The relationship between 
speed and accidents on rural single-carriageway roads. TRL report TRL511. 
Transport Research Laboratory, Crowthorne, Berkshire. 



State-of-the-art approaches to road accident black spot management and safety analysis of road networks  

108 Copyright © Transportøkonomisk institutt, 2007 
Denne publikasjonen er vernet i henhold til Åndsverkloven av 1961 

Turner, S. and A. Nicholson (1998). Intersection accident estimation: the role of 
intersection location and non-collision flows. Accident Analysis and 
Prevention, 30, 505-517. 

Vistisen, D. (2002). Models and methods for hot spot safety work. Ph D 
dissertation. Department for informatics and mathematical models, Technical 
University of Denmark, Lyngby.  





 


	1  Introduction 
	2 Black spot management 
	2.1 Stages of black spot management 
	2.2 A review of definitions of a road accident black spot 
	2.2.1 A taxonomy of definitions 
	2.2.2 Definition, identification and analysis of black spots in Austria 
	2.2.3 Definition of black spots in Denmark 
	2.2.4 Definition and analysis of road accident black spots in Flanders 
	2.2.5 Definition and analysis of black spots in Germany 
	2.2.6 Definition of black spots in Hungary 
	2.2.7 Definition and analysis of black spots in Norway 
	2.2.8 Definition of black spots in Portugal 
	2.2.9 Definition of black spots in Switzerland 
	2.2.10 Comparative analysis of methods for identifying road accident black spots 

	2.3 Limitations of traditional approaches: identifying black spots 
	2.4 Limitations of traditional approaches: analysis of black spots 
	2.5 Theoretical definition of a black spot 
	2.6 Statistical identification of black spots: a comparative analysis 
	2.7 A new approach to the analysis of black spots 
	2.8 Ranking of black spots and selection of treatments 
	2.9 Evaluation of the effectiveness of black spot treatment 
	2.10 Key elements of state-of-the-art black spot management 
	3 Accident prediction models: a methodological review 
	3.1 Model specification 
	3.2 Choice of explanatory variables 
	3.3 Choice of model form 
	3.4 Dual-state models 
	3.5 Multi-level models 
	3.6 Specification of functional relationships 
	3.7 Specification of residual terms 
	3.8 Evaluation of goodness of fit 
	1.1.1  

	3.9 The treatment of time 
	3.10 Controlling for endogeneity 
	3.11 Causal interpretation of relationships found 
	3.12 Assessing the predictive performance of a model 
	3.13 Application of model estimates in the empirical Bayes approach to road safety estimation 
	3.14 Assessing potential sources of error in predictive models 
	3.15 Concluding remarks: criteria for assessing the quality of accident prediction models 

	4 Safety analysis of road networks 
	4.1 Stages of safety analysis of road networks 
	4.1.1 Determining the scope and level of analysis 
	4.1.2 Determining the treatment of classificatory variables in analysis 
	4.1.3 Developing a criterion for safety performance 
	4.1.4 Identifying road sections with substandard safety performance 
	4.1.5 Approach to the analysis of road sections with substandard safety performance 

	4.2 A review of some systems for safety analysis of road networks 
	4.2.1 Network safety management in Germany 
	4.2.2 Network safety management in Norway 
	4.2.3 SafetyAnalyst in the United States 

	4.3 The performance of the Empirical Bayes method 
	4.3.1 Data and methods 
	4.3.2 Results 
	4.3.3 Discussion and conclusions 

	 
	4.4 Summary of key elements of safety analysis of road networks 

	5 Discussion and conclusions 
	6 References 

	Summary.pdf
	Aim of the report and main research problems 
	Elements of the state-of-the-art approach 
	The empirical Bayes approach to road safety estimation 
	Black spot management 
	Accident prediction models: a methodological review 
	Network safety management 

	Sammendrag.pdf
	Rapportens formål og hovedproblemstillinger 
	Hovedelementer i ”state-of-the-art”-tilnærmingsmåter 
	Empirisk Bayes metode for beregning av forventingsrette ulykkestall 
	Utpekning, analyse og utbedring av spesielt ulykkesbelastede steder 
	Metodologisk vurdering av ulykkesmodeller 
	Trafikksikkerhetsanalyse av vegnettet 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




